Цвейг Арнольд

Цвейг (Zweig) Арнольд (10.11.1887, Грос-Глогау, ныне Глогув, ПНР, — 26.11.1968, Берлин), немецкий писатель и общественный деятель (ГДР), Депутат Народной палаты (1949—67). Президент Германской академии искусств (1950—53). Член Всемирного Совета Мира. Участник 1-й мировой войны 1914—18. После 1933 — в эмиграции (Чехословакия, Швейцария, Франция, Палестина). В 1948 вернулся в Берлин (ГДР). Первый успех принесли Ц. повесть "Записки о семействе Клопфер" (1911), роман "Новеллы о Клавдии" (1912, рус. пер. 1923), разрабатывающий тему творчества и власти денег, и драма "Ритуальное убийство в Венгрии" (1914; премия им. Г. Клейста, 1915). Для раннего творчества Ц. характерна камерность и тонкость психологического анализа: современные проблемы нередко преломляются в абстрактном, вневременном плане. После 1-й мировой войны в творчестве Ц. утверждаются актуальные темы современности. В 1927 он опубликовал роман "Спор об унтере Грише" (в рус. пер. — "Трагедия унтера Гриши", 1928), легший в основу эпического цикла о 1-й мировой войне — "Большая война белых людей" над которым писатель работал в течение всей жизни. Цикл открывает роман "Время созрело" (1957) — период с лета 1913 до весны 1915; "Молодая женщина 1914 года" (1931) и "Воспитание под Верденом" (1935) доводят действие до марта 1917, примыкая к "Спору об унтере Грише"; "Затишье" (1954), "Возведение на престол" (1937) и неоконченный роман "Лёд тронулся" повествуют уже о конце войны и Ноябрьской революции 1918. Исторически точно описаны ход военных действий, быт разных слоев общества. Среди наиболее значительных произведений, созданных в эмиграции, — роман "Вандсбекский топор" (опубликован в 1943 на иврите; пер. с немецкой рукописи); его главная тема — нравственный распад гитлеровского режима, разоблачение мелкобуржуазной стихии, открывшей дорогу фашизму. В романе "Мечта дорога" (1962) Ц. раскрывает трудный процесс осознания немецким интеллигентом своей ответственности за происходившее в годы фашизма. Национальная премия ГДР (1950). Международная Ленинская премия "За укрепление мира между народами" (1958).

Соч.: Ausgewähite Werke in Einzelausgaben, Bd 1—16, В.. 1957—67; в рус. пер. — Воспитание под Верденом, М.. 1954; Затишье, М., 1959; Радуга, М., 1960; Спор об унтере Грише, М., 1961.

Лит.: Топер П., Арнольд Цвейг, М., 1960: Арнольд Цвейг. Биобиблиографический указатель, М., 1961; Hilscher Е., Arnold Zweig..., В., 1968.

М. С. Харитонов.

Цвейг Стефан

Цвейг (Zweig) Стефан (28.11.1881, Вена, — 22.2.1942, Петрополис, Бразилия), австрийский писатель. Изучал романистику и германистику в университетах Вены и Берлина. Много путешествовал (Европа, Индокитай, Северная и Южная Америка). В 1928 посетил СССР, с интересом следил за успехами социалистического строительства. В годы 1-й мировой войны 1914—18 занимал пацифистские позиции. С 1934 жил в эмиграции (Великобритания, США, Бразилия). Не выдержав разлуки с родиной и отчаявшись перед лицом войны, покончил жизнь самоубийством.

В сборниках новелл "Первые переживания" (1911), "Амок" (1922), "Смятение чувств" (1927) обнаружил стремление проникнуть в тайники психологии, изображая (иногда с налётом мелодраматизма) сложные коллизии личной жизни героев. Социальное видение писателя обеднено, авторское отношение не идёт дальше сострадания к "маленькому человеку" и обличения уродливых буржуазных нравов. По колориту близок новеллам роман "Нетерпение сердца" (1939).

Важное место в творчестве Ц. занимают биографические романы, эссе, очерки. Не всегда точные в фактах, часто произвольно (иногда упрощённо) трактующие жизнь и деятельность исторические лица (например, Стендаля, Л. Н. Толстого, З. Фрейда, Ф. Ницше), беллетризованные биографии Ц. подкупают изобретательностью критического мышления, умением воссоздать исторический колорит, проникновением в психологию творческой личности: эссе об Э. Верхарне (1917), Р. Роллане (1921), цикл биографий "Строители мира" (1920—28). около 30 лет работал над биографией О. Бальзака (опубликована в 1946). Абстрактность гуманистических воззрений Ц. особенно явственна в его воспоминаниях "Вчерашний мир" (опубликованы в 1944) и сборнике речей, эссе, критических выступлений "Встречи с людьми, книгами, городами" (1937). Последние вспышки веры в отвагу и дерзание человеческого гения в романах "Магеллан" (1938) и "Америке" (опублиованы в 1942) уже не могли смягчить кризиса, долго вызревавшего в творчестве и мировоззрении Ц.

Соч.: Ausgewähite Werke, Bd 1—2, Düsseldorf, 1960; Zweig St., Zweig Fr., Briefwechsel, Bern, [1951]; Strauss R., Zweig St., Briefwechsel, [Fr./M.], 1957; Gorki М., Zweig St., Briefwechsel, Lpz., 1971: в рус. пер. — Собр. соч., предисл. М. Горького, т. 1—12, Л., 1928—32; Собр. соч., [вступит. ст. Б. Л. Сучкова], т. 1—7, М., 1963.

Лит.: Луначарский А. В., [Предисл.], в кн.: Цвейг С., Собр. соч., т. 10, Л., [1932]; Федин К., Писатель. Искусство. Время, М., 1961; Сучков Б. Л,, Лики времени, М., 1976; Zweig F. R., Stefan Zweig. Eine Bildbiographie, [Münch., 1961]; Prater D. A., European of yesterday. A biography of St. Zweig, Oxf., 1972; Klawitter R. J., Stefan Zweig. A bibliography, Chapel Hill, [1965].

М. Л. Рудницкий.

Цветаева Марина Ивановна

Цветаева Марина Ивановна [26.9 (8.10).1892, Москва, — 31.8.1941, Елабуга], русская советская поэтесса. Дочь И. В. Цветаева. В 1910 выпустила сборник "Вечерний альбом", в 1912 — "Волшебный фонарь". В стихах 1912—1915 — обретение поэтического мастерства. Стихи 1916 (сборник "Вёрсты", выпуск 1, 1922) посвящены России, русским поэтам, поэтизируют возвышенную, гордую героиню, наделённую безмерностью чувств. Лирика 1917—22 отмечена сложным, противоречивым ощущением революции, романтическим неприятием всяческого насилия, в области поэтики — разнообразием интонаций и лексики (от высокоторжественной до простонародной), частушечными ритмами. В эти же годы созданы цикл пьес, поэма-сказка "Царь-девица". Весной 1922 Ц. уехала за границу, жила в Чехословакии, с конца 1925 — во Франции. Печаталась в белоэмигрантской периодике. Выпустила книги: "Ремесло", "Психея" (обе — 1923), "Молодец" (1924), "После России" (1928), опубликовала трагедии на античные сюжеты ("Ариадна", 1924; "Федра", 1927), эссе о поэтах ("Мой Пушкин", "Живое о живом" и др.), о художественном творчестве ("Искусство при свете совести", "Поэт и время" и др.), мемуарные очерки ("Дом у Старого Пимена", "Повесть о Сонечке" и др.). Трагический поэт-романтик, Ц. воспевала любовь-разлуку ("Поэма Горы", "Поэма Конца", обе — 1924), ненавидела буржуазность и мещанство (поэма "Крысолов", 1925; стихотворение "Читатели газет"), провозглашала торжество "одинокого духа" Поэта в его борьбе с "роком". В 1930-е гг. обострились ностальгические настроения Ц. ("Стихи к сыну", "Тоска по родине! Давно..."). В 1938—39 был написан антифашистский цикл "Стихи к Чехии". В 1939 вернулась в СССР. Занималась стихотворными переводами. Находясь в эвакуации, под влиянием тяжёлых жизненных обстоятельств покончила с собой. Поэзия Ц. эволюционировала от простых, напевных, классически ясных форм к более экспрессивным, стремительным ритмически изощрённым; язык лирики Ц. 30-х гг. афористичен, каждое слово предельно насыщено смыслом и чувством.

Соч.: Избр. произв. [Вступ. ст. Вл. Орлова], М. — Л., 1965; Мой Пушкин, М., 1967; Просто сердце. Стихи зарубежных поэтов в переводе М. Цветаевой, М., 1967.

Лит.: Антокольский П., Книга Марины Цветаевой, "Новый мир", 1966, № 4; Цветаева А., Воспоминания, М., 1971; Твардовский А., Марина Цветаева. Избранное, в его кн.: О литературе, М., 1973; Эфрон А., Страницы воспоминаний, "Звезда", 1973, № 3; её же, Страницы былого, "Звезда", 1975, № 6.

Л. Л. Саакянц.

Цветаев Вячеслав Дмитриевич

Цветаев Вячеслав Дмитриевич [5(17).1.1893, ст. Малоархангельск, ныне Орловской области, — 11.8.1950, Москва], советский военачальник, генерал-полковник (1943), Герой Советского Союза (6.4.1945). Член КПСС с 1943. родился в семье ж.-д. служащего. Участник 1-й мировой войны 1914—18 (командир роты, батальона, поручик). В Красной Армии с 1918. В Гражданскую войну 1918—20 командир полка, бригады и начальник стрелковой дивизии. Окончил Высшие академические курсы (1922), Курсы усовершенствования высшего начсостава при Военной академии им. М. В. Фрунзе (1927). В Великую Отечественную войну 1941—45 командующий оперативной группой войск 7-й армии (июль 1941 — январь 1942), командующий 5-й ударной армией (декабрь 1942 — май 1944), заместитель командующего войсками 1-го Белорусского фронта (май — сентябрь 1944), командующий 33-й (с сентября 1944) армией на Южном, 3-м и 4-м Украинском и 1-м Белорусском фронтах. После войны заместитель Главкома (июль 1945 — январь 1947) и Главнокомандующий Южной группой войск (январь 1947 — январь 1948). С января 1948 начальник Военной академии им. М. В. Фрунзе. Награжден 2 орденами Ленина, 4 орденами Красного Знамени, 3 орденами Суворова 1-й степени, орденами Кутузова и Богдана Хмельницкого 1-й степени и медалями.

Цветаев Иван Владимирович

Цветаев Иван Владимирович [4(16).5.1847, с. Дроздово Владимирской губернии, — 30.8 (12.9).1913, Москва], русский филолог-искусствовед, деятель культуры, действительный член петербургской АХ (1903), член-корреспондент Петербургской АН (1904). Окончил Петербургский университет (1870). Профессор Варшавского (1872—1873), Киевского (1876—77), Московского (с 1877, с 1889 заведующий кафедрой теории и истории изящных искусств) университетов. В 1882—89 сотрудник, в 1900—10 директор Румянцевского музея в Москве. Основатель и первый директор (с 1911) московского Музея изящных искусств (ныне Музей изобразительных искусств им. А. С. Пушкина), инициатор сбора частных пожертвований на приобретение коллекций и строительство здания музея (1898—1912, архитектор Р. И. Клейн). Основные труды посвящены античной филологии, изучению италийских языков, а также искусства, культурной и общественной жизни древних народов. Почётный член Болонского университета (1888).

Соч.: Сборник осских надписей с очерком фонетики, морфологии и глоссарием, К., 1877; Учебный атлас античного ваяния, в. 1—3, М., 1890—1894; Из жизни высших школ Римской империи. М., 1902; Inscriptiones Italiae mediae dialecticae..., v. [1—2], Lipsiae, 1884—85; Inscriptiones Italiae inferioris dialecticae, Mosquae, 1886.

Лит.: Корыхалова Т. П., Труды И. В. Цветаева по италийской эпиграфике, "Вестник древней истории", 1973, № 2.

В. П. Нерознак.

Цветаев Лев Алексеевич

Цветаев Лев Алексеевич (1777 — 7.2.1835, Москва), русский юрист. В 1798 окончил Московский университет, с 1801 продолжал образование в Германии, а затем во Франции. В 1804 избран членом Французской академии моральных и политических наук, с 1805 профессор Московского университета. Преподавал естественное, гражданское, уголовное, международное право, политическую экономию. Автор трудов по истории римского права.

Соч.: Краткая теория законов, ч. 1—3, М., 1810; Первые начала прав: частного и общего, с присовокуплением оснований народного права, М., 1823; Начертание теории уголовных законов, М., 1825; Основания права частного гражданского, М., 1825.

Цвета каления

Цвета каления, цвета свечения металла (сплава), зависящие от температуры его нагрева. Некоторые Ц. к., характерные для углеродистой стали: тёмно-коричневый (550 °С), тёмно-красный (680 °С), вишнёвый (770 °С), ярко-красный (900 °С), жёлтый (1000 °С), белый (1300 °С). Ц. к. могут несколько изменяться в зависимости от освещения. До появления пирометров и соответствующих контрольно-измерительных приборов по Ц. к. определяли температуру нагретого металла.

Цвета побежалости

Цвета побежалости стали, радужная окраска, появляющаяся на чистой поверхности нагретой стали в результате образования на ней тончайшей окисной плёнки. Толщина плёнки зависит от температуры нагрева стали; плёнки разной толщины по-разному отражают световые лучи, чем и обусловлены те или иные Ц. п. Некоторые Ц. п., характерные для углеродистой стали: соломенный (220 °С), коричневый (240 °С), пурпурный (260 °С), синий (300 °С), светло-серый (330—350 °С). На легированных (особенно высоколегированных) сталях те же Ц. п. появляются при более высоких температурах. На Ц. п. влияют также время выдержки стали при данной температуре, освещение и др. факторы. До появления пирометров и соответствующих контрольно-измерительных приборов по Ц. п. судили о температуре нагрева стали.

Цвет (в искусстве)

Цвет в искусстве, художественное выражение человеком его способности к восприятию действительности во всём богатстве красок. Ц. выступает в связи с такими элементами художественной формы, как композиция, пространство, фактура, колорит, пронизывая всю сферу материального воплощения произведений искусства (см. Полихромия). Ц. может характеризовать степень отдалённости объекта в картинном пространстве (цветовая перспектива), его связь с др. объектами и окружающей средой (см. Синтез искусств), материальные свойства отдельного объекта или его частей, общий эмоциональный строй художественного образа. Ц. может образовывать условные системы, имеющие символическое значение (особенно на ранних ступенях развития культуры или в средневековье, см., например, Иконопись). В отдельные эпохи в развитии мирового искусства складываются свои, характерные для этой эпохи, представления об использовании Ц., связанные с понятиями стиля, направления, творческого метода.

Лит.: Маца И. Л., Проблема цвета в искусстве, "Искусство", 1933, № 1—2; Regel G., Grundfragen des farbigen Gestaltens, B., 1961.

В. С. Турчин.

Цветение растений

Цветение растений, период жизнедеятельности растений, начиная с заложения в почках зачатков цветков и соцветий до засыхания околоцветника и тычинок. Основное назначение Ц. р. — осуществление полового процесса. Внешне период Ц. р. — от начала раскрывания первых цветков до отцветания последних. Цветение наступает у однолетних растений в первый же год их жизни, у двулетних — на второй год; многолетние травянистые и древесные растения впервые зацветают, достигнув определенного возраста (многие деревья, например, 20—30 лет, многие травы — 2—5 лет); многие растения цветут в течение жизни многократно (поликарпические растения), некоторые пальмы, агавы так же, как однолетники и двулетники, цветут 1 раз в жизни (монокарпические растения). Для многих древесных растений характерна периодичность цветения; например, многие плодовые обильно цветут через год, дуб — через 5—7 лет, а такие тропические растения, как цезальпиния, кокосовая пальма, начав цвести, цветут непрерывно. У одних растений цветки, открывшись, уже не закрываются до увядания, у других — могут открываться и закрываться неоднократно (например, у шафрана 10—12 раз). Продолжительность цветения колеблется от 20—25 мин (например, у кувшинки амазонской) до 70—80 суток (у некоторых орхидей), пока не происходит опыления, после чего цветки быстро увядают. Цветки разных видов растений раскрываются утром, днём или ночью, причём при хорошей и ясной погоде — в определенное время (см. "Цветочные часы").

В ходе эволюции у растений в соответствии с основной функцией — осуществлением полового процесса — выработались и закрепились приспособительные реакции яровизации и фотопериодизма (в результате чего Ц. р. приурочено к наиболее благоприятному для него сезону), а также многочисленные механизмы, обеспечивающие наступление полового процесса. Например, цветки, опыляемые насекомыми, привлекают их с помощью нектара, пыльцы, запаха и окраски. В период цветения у многих растений цветки испускают аромат именно в то время, когда происходит лет опыляющих их насекомых (опыляемые ночными бабочками цветки петунии, жимолости, пеларгонии и др. днём пахнут слабо, а цветки, опыляемые пчёлами, дневными бабочками, перестают испускать аромат с заходом Солнца). Окраска привлекает определенных насекомых; так, пчёлы предпочитают синий и фиолетовый цвета, а ночные бабочки — белый и бледно-жёлтый. У некоторых орхидей форма цветка напоминает самку насекомых-опылителей и т. о. привлекает самцов (опыление таких орхидей происходит до того, как появляются самки, которые могли бы "конкурировать" с цветками). Внутренние факторы, обусловливающие цветение, привлекали внимание исследователей с середины 18 в. В 1798 И. В. Гёте развил теорию о цветке как о видоизменённом побеге и дал толчок работам в этом направлении. Немецкий ботаник Ю. Сакс (1880) разработал физиологическую концепцию о роли цветообразующих веществ, немецкий учёный Г. Клебс (1913) создал теорию о значении азотных соединений. Вслед за этим (1920) американские учёные Х. А. Аллард и У. У. Гарнер открыли явление фотопериодизма, а советский исследователь М. Х. Чайлахян выдвинул представление о гормональной природе цветения. Согласно этой теории, Ц. р. регулируется гормональным комплексом — флоригеном, который, по-видимому, индуцирует заложение зачатков цветков. В связи с этим важнейшими проблемами в исследованиях цветения стали изучение меристемы в конусе нарастания побега — в месте непосредственного образования цветков — и изучение листьев как места образования фитогормонов, регулирующих цветение.

Лит.: Чайлахян М. Х., Факторы генеративного развития растений, М., 1964; Аксенова Н. П., Баврина Т. В., Константинова Т. Н., Цветение и его фотопериодическая регуляция, М., 1973; Терёхин Э. С., Федоров Р. М., Жизнь цветка, М., 1975; Lang A., Physiology of flower initiation, в кн.: Encyclopedia of plant physiology, v. 15, pt. 1, B. — [u. a.], 1965, s. 1380—1536.

В. З. Подольный.

Цвет (зрительное ощущение)

Цвет, одно из свойств объектов материального мира, воспринимаемое как осознанное зрительное ощущение. Тот или иной Ц. "присваивается" человеком объектам в процессе их зрительного восприятия.

В подавляющем большинстве случаев цветовое ощущение возникает в результате воздействия на глаз потоков электромагнитного излучения из диапазона длин волн, в котором это излучение воспринимается глазом (видимый диапазон — длины волн от 380 до 760 нм). Иногда цветовое ощущение возникает без воздействия лучистого потока на глаз — при давлении на глазное яблоко, ударе, электрическом раздражении и др. (см. Фосфен), а также по мысленной ассоциации с др. ощущениями — звука, тепла и т.д., и в результате работы воображения. Различные цветовые ощущения вызывают разноокрашенные предметы, их разноосвещённые участки, а также источники света и создаваемое ими освещение. При этом восприятия Ц. могут различаться (даже при одинаковом относительном спектральном составе потоков излучения) в зависимости от того, попадает ли в глаз излучение от источников света или от несамосветящихся объектов. В человеческом языке, однако, используются одни и те же термины для обозначения Ц. этих двух разных типов объектов. Основную долю предметов, вызывающих цветовые ощущения, составляют несамосветящиеся тела, которые лишь отражают или пропускают свет, излучаемый источниками. В общем случае Ц. предмета обусловлен следующими факторами: его окраской и свойствами его поверхности; оптическими свойствами источников света и среды, через которую свет распространяется; свойствами зрительного анализатора и особенностями ещё недостаточно изученного психофизиологического процесса переработки зрительных впечатлений в мозговых центрах.

Эволюционно способность к восприятию Ц. развилась для целей идентификации предметов вместе со способностями к восприятию других их свойств (размеров, твёрдости, теплоты и др.) и перемещений в пространстве, помогая обнаруживать и опознавать в жизненно важных ситуациях отдельные предметы по их окраске при всевозможных изменениях освещения и состояния окружающей их среды. Эта необходимость распознавания объектов явилась главной причиной того, что их Ц. определяются в основном их окраской, и при привычных для человека условиях наблюдения за счёт вносимой наблюдателем бессознательно поправки на освещение лишь в малой степени зависят от освещения. Например, зелёная листва деревьев признаётся зелёной даже при красноватом освещении на закате солнца. Оговорка о привычных (в широком смысле) условиях наблюдения весьма существенна — если сделать их резко необычными, суждения человека о Ц. предметов (следовательно, и его цветовые ощущения) становятся неуверенными или ошибочными. (Так, описания и попытки воспроизведения Ц. т. н. космических зорь, сделанные разными космонавтами, сильно отличались одно от другого и от Ц. этих "зорь", зафиксированных объективными методами цветной фотографии.) Вырабатывающееся и закрепляющееся в человеческом сознании устойчивое представление об определённом Ц. как неотъемлемом признаке привычных объектов наблюдения называется "эффектом принадлежности Ц.", или "явлением константности Ц.". Эта психологическая особенность зрительного восприятия наиболее сильно проявляется при рассматривании несамосветящихся предметов и обусловлена тем, что в повседневной жизни мы одновременно рассматриваем совокупности предметов, подсознательно сравнивая их Ц., либо сравниваем цветовые ощущения от разноокрашенных или разноосвещённых участков этих предметов. Эффект принадлежности Ц. несамосветящихся объектов настолько значителен, что даже в неблагоприятных условиях рассматривания Ц. предмета осознаётся в результате опознания предмета по др. признакам. Наименования многих Ц. произошли от название объектов, окраска которых очень сильно выражена: малиновый, розовый, изумрудный. Нередко даже Ц. источника света описывают Ц. какого-либо характерного несветящегося объекта: кроваво-красный диск Солнца. Эффект принадлежности Ц. не столь силён для источников света, поскольку в обычных (не связанных с их производством) условиях их редко сопоставляют с др. источниками, и зрительный анализатор в значительной степени адаптируется к условиям освещения. Примером может служить неопределённость понятия "белый свет", в отличие от полной определённости понятия "белый Ц. поверхности несамосветящегося предмета" (Ц. поверхности, на всех участках которой во всём видимом диапазоне минимально и одинаково по относительной интенсивности поглощение света).

Восприятие Ц. может частично меняться в зависимости от психофизиологического состояния наблюдателя, например усиливаться в опасных ситуациях, уменьшаться при усталости и т.д. Несмотря на адаптацию глаза к условиям освещения, оно может довольно заметно отличаться от обычного при изменении интенсивности излучения (того же относительного спектрального состава) — явление, открытое немецкими учёными В. Бецольдом и Э. Брюкке в 1870-х гг. Оно наглядно демонстрируется в т. н. бинокулярной колориметрии, основанной на независимой адаптации одного глаза от другого. Всё это указывает на ведущую роль мозговых центров, ответственных за восприятие Ц., и степени их "тренированности" (при неизменном фотохимическом аппарате цветового зрения).

Ц. излучений, длины волн которых располагаются в определённых интервалах из диапазона видимого света вокруг длины волны какого-либо монохроматического излучения, называются спектральными Ц. Излучения с длинами волн от 380 до 470 нм имеют фиолетовый и синий Ц., от 480 до 500 нм — сине-зелёный, от 510 до 560 нм — зелёный, от 570 до 590 нм — жёлто-оранжевый, от 600 до 760 нм — красный (в более мелких участках этих интервалов Ц. излучений соответствуют различным оттенкам указанных Ц., большее количество которых легко различается тренированным наблюдателем).

Развитие способности к ощущению Ц. эволюционно обеспечивалось формированием специальной системы цветового зрения, состоящей из трёх типов цветочувствительных фоторецепторов в центральном участке сетчатки глаза (т. н. колбочек) с максимумами спектральной чувствительности в трех разных спектральных участках: красном, зелёном и синем, а также четвёртого типа рецепторов (палочек), не обладающих преимущественной чувствительностью к какому-либо одному спектральному Ц., расположенных по периферии сетчатки и играющих главную роль в создании ахроматических (см. ниже) зрительных образов. Часто недооцениваемое значение палочек в механизме распознавания Ц. становится тем выше, чем ниже освещённость наблюдаемых предметов. Воздействие различных по спектральному составу и интенсивности потоков лучистой энергии на эти четыре типа рецепторов сетчатки и является физико-химической основой различных восприятий Ц. Комбинации разных по интенсивности раздражений фоторецепторов, перерабатываемые и в периферийных проводящих нервных путях, и в мозговых зрительных центрах, дают всё многообразие цветовых ощущений. Суммарная спектральная чувствительность глаза, обусловленная действием фоторецепторов всех типов, максимальна в "зелёной" области (длина волны около 555 нм), а при понижении освещённости смещается в "сине-зелёную" область. Предполагавшаяся ранее сводимость всех цветовых ощущений к сочетаниям различных раздражений только трёх типов цветочувствительных элементов послужила основой для разработки способов количественного выражения Ц. в виде набора трёх чисел. Подобный подход имеет рациональную основу (см. ниже), однако при разработке таких способов не могли быть учтены влияние вариаций освещённости и интенсивности излучения, роль (весьма значительная) зрительных мозговых центров и общего психофизиологического состояния наблюдателя.

При уточнённом качественном описании Ц. используют три его субъективных атрибута: цветовой тон (ЦТ), насыщенность и светлоту. Разделение признака Ц. на эти взаимосвязанные компоненты есть результат мысленного процесса, существенно зависящего от навыка и обучения. Наиболее важный атрибут Ц. — ЦТ ("оттенок цвета") — ассоциируется в человеческом сознании с обусловленностью окраски предмета определённым типом пигмента, краски, красителя. Например, зелёный тон присваивают предметам с окраской, близкой к окраске естественной зелени, содержащей хлорофилл. Насыщенность характеризует степень, уровень, силу выражения ЦТ. Этот атрибут в человеческом сознании связан с количеством (концентрацией) пигмента, краски, красителя. Серые тона называются ахроматическими (бесцветными) и считают, что они не имеют насыщенности и различаются лишь по светлоте. Светлоту сознание обычно связывает с количеством чёрного или белого пигмента, реже — с освещённостью. Светлоту разноокрашенных объектов оценивают, сопоставляя их с ахроматичными объектами. Ахроматичность несамосветящихся объектов обусловлена более или менее равномерным, одинаковым отражением ими излучений всех длин волн в пределах видимого спектра. Ц. ахроматичных поверхностей, отражающих максимум света, называется "белым". Несмотря на то, что по такому определению "белыми" могут оказаться предметы, которые при непосредственном сравнении дают разные цветовые ощущения, среди ахроматических Ц. несамосветящихся объектов белый Ц. занимает исключительное положение. Поверхности с белой окраской часто служат своеобразными "эталонами": они всегда сразу узнаются и именно сопоставление с ними, наряду с адаптацией глаза, позволяет бессознательно вводить поправку на освещение. Даже если наблюдаются только белые предметы, по ним опознаётся Ц. самого освещения. При "узнавании" Ц. объектов в отсутствии "эталонных" белых поверхностей решающую роль играют т. н. цветотеневые соотношения, которые даёт сопоставление объектов, различающихся по светлоте и ЦТ, и ахроматических объектов.

Насыщенность и светлота несамосветящихся предметов взаимосвязаны, т.к. усиление избирательного спектрального поглощения при увеличении количества (концентрации) красителя всегда сопровождается уменьшением интенсивности отражённого света, что вызывает ощущение уменьшения светлоты. Так, роза более насыщенного пурпурного Ц. воспринимается более тёмной, чем роза с тем же, но менее выраженным ЦТ.

Одновременное рассматривание одних и тех же несамосветящихся предметов или источников света несколькими наблюдателями с нормальным цветовым зрением (в одинаковых условиях рассматривания) позволяет установить однозначное соответствие между спектральным составом сравниваемых излучений и вызываемыми ими цветовыми ощущениями. На этом основаны цветовые измерения (колориметрия). Хотя такое соответствие и однозначно, но не взаимно-однозначно: одинаковые цветовые ощущения могут вызывать потоки излучений различного спектрального состава. Определений Ц., как физической величины, существует много. Но даже в лучших из них с колориметрической точки зрения часто опускается упоминание о том, что указанная (не взаимная) однозначность достигается лишь в стандартизованных условиях наблюдения, освещения и т.д., не учитывается изменение восприятия Ц. при изменении интенсивности излучения того же спектрального состава (явление Бецольда — Брюкке), не принимается во внимание т. н. цветовая адаптация глаза и др. Поэтому многообразие цветовых ощущений, возникающих при реальных условиях освещения, вариациях угловых размеров сравниваемых по Ц. элементов, их фиксации на разных участках сетчатки, разных психофизиологических состояниях наблюдателя и т.д., всегда богаче колориметрического цветового многообразия. Например, в колориметрии одинаково определяются как оранжевые или жёлтые Ц., которые в повседневной жизни воспринимаются (в зависимости от светлоты) как "бурые", "каштановые", "коричневые", "шоколадные", "оливковые" и т.д. В одной из лучших попыток определения Ц., принадлежащей Э. Шредингеру, трудности задачи "снимаются" простым отсутствием каких-либо указаний на зависимость цветовых ощущений от многочисленных конкретных условий наблюдения. По Шредингеру, Ц. есть свойство спектрального состава излучений, общее всем излучениям, визуально не различимым для человека.

При цветовых измерениях (в колориметрии) Ц. обозначают совокупностью трёх чисел. Существует много систем, отличающихся методикой определения таких трёх чисел. Широко применяется, например, система, в которой численные значения придают описанным выше субъективным атрибутам Ц. Придание им численных значений осуществляют либо компараторным методом (сравнение с эталонами Ц., составляющими цветовые таблицы или атласы), либо инструментально-расчётным методом, в котором ЦТ выражается через объективно определяемую длину волны (длину волны излучения, воспроизводящего — в смеси с белым Ц. — измеряемый Ц.), насыщенность Ц. — через его чистоту (соотношение интенсивностей монохроматического и белого Ц. в смеси), а светлота выражается через также объективно устанавливаемую яркость измеряемого излучения ("гетерохромную", т. е. "разноцветную" яркость), определяемую экспериментально или рассчитываемую по кривой спектральной световой эффективности излучения (его видности, как говорили раньше). Количественное выражение субъективных атрибутов Ц. неоднозначно, поскольку оно сильно зависит от различия между конкретными условиями рассматривания и стандартизованными колориметрическими. В частности, поэтому существует много формул, определяющих светлоту.

В колориметрии особое значение придают измерению спектральных Ц. и определению по ним т. н. кривых сложения, характеризующих спектральную чувствительность зрительного анализатора относительными количествами трёх излучений, смешение которых даёт определённое цветовое ощущение. Ц. излучений разного спектрального состава, которые при одинаковых условиях рассматривания визуально воспринимаются одинаковыми, называются метамерными Ц., или метамерами. Метамерия Ц. увеличивается с уменьшением его насыщенности, т. е. чем менее насыщен Ц., тем большим числом комбинаций смесей излучений разного спектрального состава он может быть получен. Для белых Ц. характерна наибольшая метамерия. Ц. любых двух излучений, создающих в смеси белый Ц., называются дополнительными цветами. Например, дополнительными при получении белого Ц. от источника с цветовой температурой 4800 К являются сине-зеленые и красные монохроматические излучения с длинами волн 490 и 595 нм, либо 480 и 580 нм.

Наблюдатель с нормальным цветовым зрением при сопоставлении различно окрашенных предметов или источников света может различать при внимательном рассматривании большое количество Ц. Натренированный наблюдатель различает по ЦТ около 150 Ц., по насыщенности около 25, по светлоте от 64 при высокой освещённости до 20 при пониженной освещённости (разумеется, здесь речь идёт о "тренированности" мозговых зрительных центров, ответственных за цветовые ощущения). При аномалиях цветового зрения различается меньшее число Ц. около 90% всех людей обладают нормальным цветовым зрением и около 10% — частично или полностью "цветнослепые". Характерно, что из этих 10% людей с аномалиями цветового зрения 95% — мужчины. Существует три вида таких аномалий: краснослепые (протанопы) не отличают красных Ц. от близких к ним по светлоте ахроматических Ц. и дополнительных по ЦТ тёмно-голубых Ц.; зелёнослепые (дейтеранопы) не отличают или плохо отличают зелёные цвета от близких к ним по светлоте ахроматических Ц. и дополнительных пурпурных Ц.; синеслепые (тританопы) не отличают синих Ц. от близких по светлоте ахроматических и дополнительных темно-жёлтых Ц. Очень редки случаи полной цветовой слепоты, когда воспринимаются лишь ахроматические образы. Аномалии цветового зрения не мешают нормальной трудовой деятельности при условии, что к ряду профессий цветнослепые не должны допускаться.

Одно из основных свойств зрительного анализатора — адаптация зрения — обеспечивает опознание предметов по Ц. (за счёт эффекта принадлежности Ц.) при вариациях условий освещения и рассматривания в весьма широких пределах. Вместе с тем при изменении спектрального состава освещения визуально воспринимаемые различия между одними Ц. усиливаются, а между другими ослабевают. Например, при желтоватом освещении, создаваемом лампами накаливания, синие и зелёные ЦТ различаются хуже, чем красные и оранжевые, а при синеватом освещении в пасмурную погоду, наоборот, хуже различаются красные и оранжевые ЦТ. При слабом освещении все Ц. различаются хуже и воспринимаются менее насыщенными ("эффект сумеречного зрения"). При очень сильном освещении Ц. воспринимаются тоже менее насыщенными и "разбелёнными". Эти особенности зрительного восприятия широко используются в изобразительном искусстве для создания иллюзии того или иного освещения.

Цвет в индивидуальной и общественной практике человека. Исключительно велика роль Ц. в жизни и деятельности каждого отдельного человека и общества в целом: в промышленности, транспорте, искусстве, современной технике передачи информации и т.д. В быту и на производстве Ц. и их сочетания интенсивно используются как символы, заменяющие целые понятия в правилах поведения. Так, сигнальные огни того или иного Ц. на транспортных магистралях разрешают или запрещают движение, предупреждают, требуют внимания. В промышленности и др. коллективной деятельности Ц. как символы применяются для маркировки трубопроводов с различными веществами или температурами, различных электропроводов, всевозможных жетонов, информационных карт, банковских документов, денежных знаков, спецодежды и др. В промышленности и быту Ц. является одним из основных факторов производственного и бытового комфорта. Изучение психологического воздействия определённых сочетаний Ц. — цветовых гармоний — составляет предмет эстетики Ц. Цветовые гармонии широко используются как в искусстве, так и при организации производственных процессов для создания психологических акцентов, обеспечивающих увеличение производительности труда и уменьшение утомляемости работников, а также бытовой комфорт, способствующий активному и наиболее полноценному отдыху. Особо важное значение Ц. имеет для повышения качества и стандартности промышленной продукции. Как показатель высокого качества продуктов Ц. незаменим в случаях, когда др. объективные или субъективные методы по тем или иным причинам нельзя применить либо когда их применение требует длительной и трудоёмкой работы или дорогостоящей аппаратуры. Поэтому широкое распространение получили компараторные методы идентификации Ц. многих пищевых продуктов и веществ, используемых в химической, лёгкой и пищевой промышленности, а также в др. областях народного хозяйства. Для практического применения этих методов выпускаются различные цветные таблицы, атласы, образцы красок, компараторы, колориметры, цветные фотометры и денситометры.

Лит.: Артюшин Л. Ф., Основы воспроизведения цвета в фотографии, кино и полиграфии, М., 1970; Гуревич М. М., Цвет и его измерение, М. — Л., 1950; Кустарёв А. К., Колориметрия цветного телевидения, М., 1967; Ивенс Р. М., Введение в теорию цвета, пер. с англ., М., 1964: Wyszecki G., Stiles W. S., Color science, N. Y. — L. — Sydney, 1967.

Л. Ф. Артюшин.

Цветкова Елена Яковлевна

Цветкова (урожденная Барсова) Елена Яковлевна (1872, Уфа, — июль, 1929, Москва), русская певица (лирико-драматическое сопрано). В 1892 окончила Московскую консерваторию (класс Е. А. Лавровской). С 1896 солистка Московской частной русской оперы, с 1899 — Товарищества частной оперы, в 1904—11 — Оперного театра С. И. Зимина. Была одной из лучших исполнительниц партии Иоанны ("Орлеанская дева" Чайковского). Среди партий — Снегурочка, Милитриса ("Снегурочка", "Сказка о царе Салтане" Римского-Корсакова), Татьяна, Настасья ("Евгений Онегин", "Чародейка" Чайковского), Ярославна ("Князь Игорь" Бородина), Мими ("Богема" Пуччини). Оставив сцену (1917), преподавала в Киевской консерватории, в Москве.

Лит.: Яголим Б., Жемчужина русской оперной сцены, "Советская музыка". 1951, № 11.

Цветков Виктор Николаевич

Цветков Виктор Николаевич [р. 3(16).2.1910, Петербург], советский физико-химик, член-корреспондент АН СССР (1968). Окончил Ленинградский педагогический институт им. А. И. Герцена (1931). Работает в ЛГУ (с 1934, с 1945 заведующий кафедрой, с 1958 также заведующий проблемной лабораторией) и в Институте высокомолекулярных соединений АН СССР (с 1950, заведующий лабораторией). Основные труды посвящены физике полимеров и жидким кристаллам. Изучал структуру макромолекул в растворах, рассеяние света растворами полимеров. Государственная премия СССР (1952). Награжден 2 орденами, а также медалями.

Соч.: Структура макромолекул в растворах, М., 1964 (совместно с В. Е. Эскиным, С. Я. Френкелем).

Цветкович Драгиша

Цветкович (Цветковић) Драгиша (р. 15.1.1893, Ниш), государственный деятель королевской Югославии. По образованию юрист. В 1928 министр вероисповеданий. В 1929—34 находился в оппозиции к диктаторскому режиму короля Александра. В 1935 избран в Народную скупщину, получил портфель министра социальной политики и здравоохранения. В 1939—41 премьер-министр. Правительство Ц. заключило соглашение (август 1939) с руководством Хорватской крестьянской партии о предоставлении Хорватии автономии, проводило политику подавления революционного движения, ликвидации остатков демократических свобод, подписало (25 марта 1941) протокол о присоединении Югославии к Берлинскому пакту 1940. 27 марта 1941 правительство Ц. было свергнуто в результате государственного переворота; в 1943 Ц. эмигрировал за границу.

Цветково

Цветково, посёлок городского типа в Городищенском районе Черкасской области УССР. Ж.-д. узел (линии на Фастов, Христиновку, ст. им. Тараса Шевченко). Предприятия ж.-д. транспорта.

Цветковые растения

Цветковые растения, покрытосеменные (Magnoliophyta, или Angiospermae), отдел высших растений, имеющих цветок. Насчитывает свыше 400 семейств, более 12 000 родов и, вероятно, не менее 235 000 видов. По числу видов Ц. р. значительно превосходят все остальные группы высших растений, вместе взятые.

Характерные признаки Ц. р. Семязачатки (семяпочки) Ц. р. заключены (в отличие от семязачатков голосеменных)в более или менее замкнутую полость завязи, образованной одним или несколькими сросшимися плодолистиками. Характернейшая особенность Ц. р. и главное отличие цветка от стробилов голосеменных — наличие рыльца (которое у примитивных форм тянется вдоль шва плодолистика). Гаметофиты Ц. р. крайне упрощены и миниатюрны, что позволяет им развиваться значительно быстрее, чем гаметофитам голосеменных. Образуются они в результате минимального числа митотических делений, используя минимальное количество строительного материала. Даже развитие более сложного женского гаметофита (зародышевого мешка) осуществляется путём всего лишь 3 митотических делений (которым предшествуют 2 мейотических деления мегаспороцита), в то время как у голосеменных женских гаметофит развивается в результате самое меньшее 9 делений. Развитие же мужского гаметофита Ц. р. вместе с процессом гаметогенеза сводится всего лишь к 2 митотическим делениям. В связи с резким сокращением процесса индивидуального развития (онтогенеза) и крайним упрощением гаметофиты Ц. р. утратили гаметангии — антеридии и архегонии. Гаметогенез у Ц. р. передвинулся на столь раннюю стадию развития гаметофита, что гаметангии уже не могут образоваться даже в зачаточной форме. В результате сокращается также формирование самих гамет, особенно мужских гамет, или спермиев, которые крайне упрощаются.

Одна из отличительных особенностей Ц. р. — двойное оплодотворение, резко отличающее их от всех остальных групп растительного мира. Оно заключается в том, что один из двух спермиев сливается с яйцеклеткой (собственно оплодотворение, или сингамия), а другой — с 2 полярными ядрами (тригамия). В результате сингамии образуется зигота, а в результате тригамии — первичное ядро эндосперма (с характерным для него тройным набором хромосом), который служит для питания развивающегося зародыша. Тройное слияние, вероятно, возникло в результате крайнего упрощения женского гаметофита, обычно почти полностью лишённого запаса питательных веществ, и представляет собой эффективное приспособление для быстрой их компенсации.

Семена Ц. р. заключены в плод (отсюда их второе название — покрытосеменные). У относительно более примитивных, например у магнолии, пиона или лилии, плоды раскрывающиеся и поэтому органом расселения является семя, у более специализированных Ц. р., например у сложноцветных или злаков, плоды нераскрывающиеся и органом расселения служит плод.

В отличие от всех остальных высших растений, Ц. р. имеют ситовидные элементы флоэмы, снабженные клетками-спутницами. Наконец, для большинства Ц. р. характерно наличие сосудов, которые отсутствуют только у некоторых примитивных групп. По уровню своего эволюционного развития Ц. р. занимают такое же место в растительном мире, какое занимают млекопитающие в мире животных.

Палеонтологическая история Ц. р. началась с раннего мела (около 125 млн. лет назад). Возможность домелового происхождения Ц. р. современными исследователями — Дж. Аксельрод (США), Н. Хьюз (Великобритания), Дж. Доил и Л. Хики (США) и др. — отвергается. Раннемеловые Ц. р. не были столь разнообразны, как считалось раньше. Пыльцевые зёрна у самых ранних Ц. р. были однобороздные, т. е. примитивного типа, а листья представлены ограниченным числом типов и характеризовались общей неупорядоченностью всей системы жилкования (Доил и Хики, 1972, 1976).

В раннем мелу Ц. р. встречались довольно редко и играли лишь ничтожную роль в растительном покрове Земли. Однако в середине мелового периода (приблизительно 110 млн. лет назад) происходит одно из наиболее глубоких и резких изменений растительного мира суши, и Ц. р. за сравнительно короткий промежуток геологического времени — несколько млн. лет, распространяются по всему земному шару и достигают Арктики и Антарктики. Одним из основных условий быстрого распространения Ц. р. была, вероятно, их высокая эволюционная пластичность, выражавшаяся в необычайном разнообразии многочисленных приспособлений к самым различным экологическим условиям. Большую роль в эволюции и в массовом расселении Ц. р. сыграли животные-опылители, особенно сосущие насекомые. В результате адаптивной радиации Ц. р. оказались способными к образованию значительного разнообразия группировок, входящих в состав самых различных экосистем. В отличие от голосеменных, среди которых настоящие травянистые формы неизвестны, Ц. р. насчитывают большое количество разнообразных трав, в том числе и эпифитов. Ц. р. — единственная группа растений, способная к образованию сложных многоярусных сообществ, состоящих главным образом из самих Ц. р. Возникновение таких сообществ способствовало более интенсивному использованию среды и более успешному завоеванию новых территорий и освоению новых местообитаний.

Происхождение Ц. р. Несмотря на разнообразие внешней формы и внутреннего строения Ц. р., предположение о независимом происхождении разных их групп от разных голосеменных предков (а иногда и от разных отделов высших растений), т. е. идея т. н. полифилетического происхождения Ц. р., не находит подтверждения и противоречит данным сравнительной морфологии и систематики. Множество общих морфологических, анатомических и эмбриологических признаков между представителями самых различных семейств и порядков, в том числе признаков, не связанных между собой в онтогенезе и в процессе эволюции, указывает на общность происхождения всех Ц. р. Это доказывается, в частности, общностью двойного оплодотворения с образованием характерного только для них триплоидного эндосперма. О происхождении Ц. р. от общего предка свидетельствуют также данные систематики. Даже самые своеобразные и в систематическом отношении кажущиеся совершенно обособленными группы Ц. р. связаны между собой через те или иные промежуточные звенья. Все те группы, которые кажутся стоящими совершенно изолированно и внушают мысль о независимом происхождении, при ближайшем исследовании и более широком сравнении с др. группами рано или поздно находят себе естественное место в системе Ц. р. Однако вопрос о вероятных предках Ц. р. до сих пор ещё остаётся открытым. Общепризнано, что ни одна из ныне существующих групп высших растений не могла дать начало Ц. р. Среди вымерших голосеменных относительно наиболее сходны с Ц. р. беннеттитовые, у большинства представителей которых стробилы были обоеполые. Но, несмотря на поверхностное сходство между обоеполым стробилом беннеттитовых и цветком магнолии и родственных ей растений, имеются глубокие различия, свидетельствующие о том, что эволюция цветка и стробила беннеттитовых с самого начала шла в разных направлениях. Т. о., непосредственные предки Ц. р. неизвестны. Однако данные сравнительной морфологии дают основание предполагать, что предки Ц. р. были, вероятно, тесно связаны с семенными папоротниками и, возможно, представляли собой одну из ветвей этой примитивной группы голосеменных. Об этом свидетельствует т. н. внешний интегумент Ц. р., произошедший, по мнению ряда ботаников — А. Госсен, 1946 (Франция), А. Л. Тахтаджян, 1950, 1964(СССР), Дж. Уолтон, 1953 (Великобритания), Дж. Л. Стеббинс, 1974 (США), — из купулы, которая характерна для более подвинутых семенных папоротников, как медуллозовые, користоспермовые и кейтониевые. Отсутствие палеонтологических данных о первичных Ц. р. и о промежуточной группе между ними и голосеменными предками объясняется, по-видимому, тем, что они произрастали в горах, т. е. в условиях малоблагоприятных для осадкообразования и захоронения растительных остатков (Ч. Арнолд, 1947, США; В. А. Вахрамеев, 1947, СССР; Тахтаджян, 1948, и др.). Кроме того, предполагается, что их, по-видимому, небольшие популяции не играли сколько-нибудь заметной роли в растительном покрове, что также должно было сильно уменьшить их шансы на захоронение.

Основные морфологические особенности Ц. р. находят наиболее правдоподобное объяснение в неотеническом их происхождении. На организации как спорофита, так и гаметофита Ц. р. лежит печать неотении. Наиболее очевидно неотеническое происхождение цветка, а также мужского и женского гаметофитов. Цветок можно рассматривать как неотеническую форму укороченного спороносного побега примитивных голосеменных, специализированного в новом направлении. Как тычинки, так и плодолистики Ц. р., по всей вероятности, соответствуют не столько взрослым микро- и мегаспорофиллам гипотетических предков Ц. р., сколько их ранней, ювенильной стадии развития. Наконец, листья и проводящая система осевых органов Ц. р. также несут следы неотенического происхождения. Неотения обычно связана с ограничивающими факторами среды (недостаток влажности, низкая температура, короткий вегетационный сезон); поэтому естественно предположить, что Ц. р. возникли в условиях экологического стресса. По-видимому, они формировались в условиях временной сухости муссонного климата, скорее всего на открытых склонах. Как писал Ч. Дарвин в письме к швейцарскому палеонтологу О. Хееру (1875), Ц. р. должны были развиваться в какой-то изолированной области, откуда им благодаря географическим переменам удалось вырваться и быстро распространиться по свету. На основании анализа географического распространения и филогенетических отношений наиболее примитивных групп ныне живущих Ц. р. А. Л. Тахтаджян высказал предположение (1957), что эта изолированная область находилась скорее всего где-то в Юго-Восточной Азии. Наиболее вероятная область формирования и первичный центр расселения Ц. р. — территория юго-восточной части материка Лавразии, которая соответствовала юго-восточной части Китая, Индокитаю, полуострову Малакка, Филиппинским островам (или только их южной части) и части Больших Зондских островов. Вероятность того, что Юго-Восточная Азия — это именно первичный центр формирования и расселения Ц. р., а не "музей живых ископаемых", как думает, например, Стеббинс (1974), подтверждается следующими фактами: 1) несмотря на то, что в обширных областях Западной Гондваны (в Африке и особенно в Южной Америке) мезофитная тропическая лесная флора сохранилась достаточно хорошо и в большом разнообразии форм, в Юго-Восточной Азии и соседних областях сохранилось наибольшее число примитивных форм, гораздо большее, чем в Америке и особенно в Африке; 2) в тех случаях, когда примитивные группы сохранились как в Юго-Восточной Азии и соседних областях, так и на территории, соответствующей Западной Гондване, именно в Юго-Восточной Азии и соседних областях они представлены в большем разнообразии и более примитивными представителями; так, примитивные семейства магнолиевых и винтеровых отсутствуют в Африке, а в Америке представлены меньшим числом родов и видов и менее примитивными таксонами; 3) в Юго-Восточной Азии и соседних областях произрастает не только много примитивных семейств, но и наиболее примитивные представители многих более подвинутых семейств и родов как двудольных, так и однодольных.

Первичный тип Ц. р. Ни одно из ныне живущих Ц. р. не обладает всеми примитивными признаками, т. к. все, даже самые примитивные таксоны, специализировались в том или ином направлении. Однако, суммируя наиболее архаичные признаки, рассеянные среди магнолиевых, винтеровых, дегенериевых и др. примитивных семейств, можно воссоздать некоторые черты ранних Ц. р. Это, по всей вероятности, были древесные растения, скорее всего небольшие деревья, но не кустарники или тем более не полукустарники, как считает Стеббинс (1974), т. к. полукустарник — это, несомненно, вторичная жизненная форма. Ксилема была лишена сосудов. Листья были вечнозелёные (как почти у всех голосеменных), очередные, вероятно, более или менее ксероморфные, с перистым жилкованием и парацитными устьицами (с побочными клетками, расположенными по обе стороны от замыкающих клеток, параллельно их длинной оси). Цветки ранних Ц. р. были, вероятно, в примитивных цимозных соцветиях, обоеполые, с умеренно удлинённым цветоложем, на котором в спиральном порядке были расположены чашелистики, тычинки и плодолистики. Цветки были лишены лепестков, которые возникли позднее, главным образом из тычинок, опылялись насекомыми (скорее всего жуками). Пыльцевые зёрна были однобороздные, с гладкой экзиной и ещё без характерного для Ц. р. столбикового слоя в эктэкзине; семена с сильно развитым слоем из живых паренхимных клеток распространялись птицами; плоды — многолистовки. Если бы этот гипотетический первичный тип Ц. р. был найден в ископаемом состоянии, то систематики отнесли бы его скорее всего к порядку магнолиевых.

По всем данным, эволюция Ц. р. с самого начала шла путём очень широкой адаптивной радиации и очень быстрыми темпами, что объясняется как экологическими, так и генетическими и цитогенетическими факторами (в частности, большой ролью анеуплоидных хромосомных перестроек и полиплоидизации). В результате уже к середине мелового периода Ц. р. достигли очень большого разнообразия форм и оказались приспособленными к возрастающему разнообразию экологических ниш. К этому времени уже возникли все основные систематические группы Ц. р. вплоть до многих родов. Начиная с середины мелового периода Ц. р. занимают, доминирующее положение. Даже в хвойных лесах Ц. р. играют значительную роль. С Ц. р. тесно связана эволюция наземного животного мира, особенно насекомых, птиц и млекопитающих.

Классификация и филогения Ц. р. Классификация Ц. р. основанная на синтезе данных сравнительной морфологии, анатомии, эмбриологии, цитологии, генетики, биохимии и фитогеографии. В основе подразделения Ц. р. на классы, подклассы, порядки и семейства лежат морфология цветка и соцветия, тонкая структура пыльцевых зёрен, строение и развитие семязачатка, мужская и женская гаметофитов, анатомия оболочки семени, строение и степень развития зародыша, число семядолей, наличие или отсутствие эндосперма, строение и развитие устьичного аппарата, анатомия ксилемы и флоэмы. Всё большее значение приобретает сравнительное изучение ультраструктуры пластид.

Отдел Ц. р. подразделяется на 2 класса — двудольные и однодольные. Основные различия между ними показаны в следующей таблице:

Двудольные

Однодольные

Зародыши с двумя семядолями, прорастающими обычно на поверхности почвы. Семядоли обычно с 3 главными проводящими пучками

Зародыш с одной семядолей, в большинстве случаев прорастающей в почве. Семядоли обычно с 2 главными проводящими пучками

Листья с перистым, реже с пальчатым жилкованием. Черешок обычно ясно выражен. Листовых следов обычно 1-3

Листья обычно с параллельным жилкованием. Как правило, нет расчленения на черешок и пластинку. Листовых следов обычно много

Предлистья (недоразвитые листья боковых побегов) и брактеоли (прицветнички) обычно парные, расположены латерально

Предлистья и брактеоли одиночные и расположены на вентральной стороне побега (реже парные)

Проводящая система обычно из одного кольца проводящих пучков, как правило, с камбием. Во флоэме обычно имеется паренхима. Кора и сердцевина обычно хорошо дифференцированы

Проводящая система обычно из 2 (иногда больше) колец проводящих пучков. Во флоэме нет паренхимы. Ясная дифференциация коры и сердцевины обычно отсутствует

Первичный корешок обычно развивается в главный корень, от которого отходят более мелкие боковые корни. Чехлик и эпидерма обычно имеют общее происхождение в онтогенезе (за исключением порядка нимфейных)

Первичный корешок рано отмирает, заменяясь системой придаточных корней. Чехлик и эпидерма имеют в онтогенезе разное происхождение

Древесные или травянистые растения, иногда вторичные древовидные формы (например, саксаул)

Травы, иногда вторичные древовидные растения (например, пальмы)

Цветки 5-членные или, реже, 4-членные и лишь у некоторых примитивных групп 3-членные

Цветки 3-членные, реже 4- или 2-членные, никогда не бывают 5-членными

Из таблицы видно, что нет ни одного признака, который служил бы резким различием между двумя классами Ц. р. Они различаются в сущности только комбинацией признаков. По каждому из названных морфологических признаков имеются исключения.

Однодольные произошли от двудольных и, вероятно, ответвились от них уже на заре эволюции Ц. р. Они могли произойти только от таких двудольных, которые характеризовались апокарпным гинецеем и однобороздными пыльцевыми зёрнами. Среди современных двудольных наибольшим числом общих признаков с однодольными обладают представители порядка нимфейных. Однако все они — специализированные водные растения и поэтому не могут рассматриваться как вероятные предки однодольных; есть все основания для предположения, что однодольные и порядок нимфейных имеют общее происхождение от каких-то более примитивных наземных травянистых двудольных. Ближайшие предки однодольных были скорее всего наземными растениями, приспособленными к постоянной или временной влажности. Первичные однодольные были, вероятно, многолетними корневищными травами с цельными эллиптическими листьями с дуговидным жилкованием и разбросанными по поперечному разрезу стебля бессосудистыми проводящими пучками с остаточным внутрипучковым камбием; цветки — в верхушечных соцветиях, трёхчленные, с околоцветником в двух кругах, с андроцеем из примитивных лентовидных тычинок и с апокарпным гинецеем из примитивных кондупликатных плодолистиков; пыльцевые зёрна однобороздные и в зрелом состоянии двуклеточные; семена — с обильным эндоспермом.

Классы двудольных и однодольных, в свою очередь, подразделяются на подклассы, которые делятся на порядки (иногда объединяемые в надпорядки), семейства, роды и виды со всеми промежуточными категориями. Имеется целый ряд современных систем классификации Ц. р. (см. Систематика растений). Ниже дано краткое изложение системы Тахта-джяна, легшей в основу ряда справочных пособий. Указаны только классы, подклассы и важнейшие порядки и семейства.

Класс 1. Двудольные (magnoliopsida, или Dicotyledones). До 360 семейств, около 170 тыс. видов.

Подкласс 1. Магнолииды (Magnoliidae). Большей частью древесные растения, некоторые лишены сосудов. В листьях и стеблях часто имеются секреторные клетки. Устьица чаще с двумя побочными клетками. Цветки преимущественно обоеполые, часто спиральные или спироциклические. Зрелая пыльца двухклеточная или, реже, трёхклеточная. Оболочка пыльцевых зёрен однобороздная (или производная от неё). Гинецей главным образом апокарпный. Семязачатки обычно с двойным интегументом и крассинуцеллятные (материнская клетка мегаспор отделена от эпидермы мегаспорангия одним или несколькими слоями клеток). Эндосперм обычно целлюлярный. Семена, как правило, с маленьким зародышем и обильным эндоспермом. 8 порядков.

Магнолиевые (Magnoliales). Относительно самые примитивные из ныне живущих Ц. р. Семейства: винтеровые (Winteraceae), дегенериевые (Degeneriaceae), магнолиевые (Magnoliaceae), анноновые (Annonaceae), мускатниковые (Myristicaceae) и др.

Бадьяновые, или иллициевые (Illiciales). Близки к магнолиевым и, вероятно, имеют общее происхождение с винтеровыми. Семейства: бадьяновые (Illiciaceae) и лимонниковые (Schisandraceae).

Лавровые (Laurales). Близки к магнолиевым, но более подвинуты. Семейства: монимиевые (Monimiaceae), каликантовые (Calycanthaceae), лавровые (Lauraceae) и др.

Перечные (Piperales). Близки к лавровым, с которыми имеют общее происхождение. Порядок очень специализирован. Семейства: савруровые (Saururaceae) и перечные (Piperaceae).

Кирказоновые (Aristolochiales). Произошли, по-видимому, непосредственно от магнолиевых. Семейство кирказоновые (Aristolochiaceae).

Раффлезиевые (Rafflesiaceae). Произошли, вероятно, от предков порядка кирказоновых. Бесхлорофильные паразитные травы. Семейства: раффлезиевые (Rafflesiaceae) и хидноровые (Hydnoraceae).

Нимфейные (Nymphaeales). Вероятное происхождение от древнейших бессосудистых представителей порядка магнолиевых. Многолетние водные травы. Важнейшие семейства: кабомбовые (Cabombaceae) и нимфейные (Nymphaeaceae).

Лотосовые (Nelumbonales). Систематическое положение и происхождение не вполне ясны. Одно семейства лотосовые с единственным родом лотос. Иногда объединяется с семейства нимфейных, от которых, однако, резко отличается многими признаками.

Подкласс 2. Ранункулиды (Ranunculidae). Очень близок к подклассу магнолинд, с которым иногда объединяется, но более подвинут. главным образом травы. Все представители обладают сосудами. Секреторные клетки в паренхимных тканях обычно отсутствуют (имеются лишь у луносемянниковых); устьица разных типов, большей частью без побочных клеток; цветки обоеполые или однополые, часто спиральные или спироциклические. Зрелая пыльца преимущественно двухклеточная; оболочка пыльцевых зёрен трёхбороздная или производных типов (но не однобороздная). Семязачатки обычно с двойным интегументом и крассинуцеллятные или, реже, тенуинуцеллятные (материнская клетка мегаспор лежит непосредственно под эпидермой мегаспорангия). Семена обычно с маленьким зародышем и большей частью с обильным эндоспермом, редко без эндосперма. 3 порядка.

Лютиковые (Ranunculales). Вероятно, имеют общее происхождение с бадьяновыми. Важнейшие семейства: луносемянниковые, или мениспермовые (Menispermaceae), лютиковые (Ranunculaceae) и барбарисовые (Berberidaceae).

Маковые (Papaverales). Близки к лютиковым. Важнейшие семейства: маковые (Papaveraceae) и дымянковые (Fumariaceae), часто объединяемые в одно семейство маковых.

Саррацениевые (Sarraceniales). Очень специализированные насекомоядные травы, всё ещё сохранившие некоторые примитивные признаки, сближающие их с порядком лютиковых. семейства саррацениевые (Sarraceniaceae).

Подкласс 3. Гамамелидиды (Hamamelididae). главным образом древесные растения. С сосудами (за исключением порядка троходенровых). Устьица с двумя или более побочными клетками или побочные клетки отсутствуют. Цветки большей частью анемофильные, более или менее редуцированные, чаще однополые; околоцветник обычно слабо развит и цветки безлепестные и часто также без чашечки. Зрелая пыльца обычно двухклеточная, трёхбороздная или производная от этого типа. Гинецей ценокарпный. Семязачатки с двойным интегументом и в большинстве случаев крассинуцеллятные. Плоды большей частью односемянные. Семена с обильным или скудным эндоспермом или вовсе без эндосперма. 8 порядков.

Троходендровые (Trochodendralcs). Занимают промежуточное положение между магнолиевыми, с одной стороны, и багрянниковыми и гамамелидовыми — с другой. Семейства: троходендровые (Trochodendraceae) и тетрацентровые (Tetracentraceae).

Багрянниковые, или церцидифилловые (Cercidiphyllales). Близки к троходендровым. семейство багрянниковые (Cercidiphyllaceae).

Гамамелидовые (Hamamelidales). Служат связующим звеном между троходендровыми, с одной стороны, и всеми следующими порядками подкласса — с другой. Произошли, вероятно, от ближайших предков троходендровых, обладавших энтомофильными цветками с апокарпным гинецеем. Важнейшие семейства: гамамелидовые (Hamamelidaceae) и платановые (Platanaceae).

Крапивные (Urticales). Связаны с гамамелидовыми и, вероятно, происходят от него. Семейства: вязовые, или ильмовые (Ulmaceae), тутовые (Moraceae), коноплёвые (Cannabaceae) и крапивные (Urticaceae).

Казуариновые (Casuarinales). Происходят, по-видимому, от гамамелидовых. Семейство казуариновые (Casuarinaceae).

Буковые (Fagales). Происходят, по всей вероятности, от гамамелидовых. Семейства: буковые (Fagaceae) и берёзовые (Betulaceae).

Мириковые (Myricales). Имеют много общего с казуариновыми и берёзовыми, с одной стороны, и с ореховыми — с другой. семейство мириковые (Myricaceae).

Ореховые (Juglandales). Имеют много общего с мириковыми, а также с буковыми. Семейства: роиптелейные (Rhoipteleaceae) и ореховые (Juglan-daceae).

Подкласс 4. Кариофиллиды (Caryophyllidae). Обычно травянистые растения, полукустарники или низкие кустарники, редко небольшие деревья. Листья цельные. Сосуды всегда имеются; членики сосудов с лестничной или простой перфорацией. Устьица с двумя или тремя (редко с четырьмя) побочными клетками или побочные клетки отсутствуют. Цветки обоеполые или реже однополые, большей частью безлепестные. Зрелая пыльца трёхклеточная, трёхбороздная или производная от этого типа. Гинецей апокарпный или, реже, ценокарпный. Семязачатки обычно с двойным интегументом, крассинуцеллятные. Семена большей частью с согнутым периферическим зародышем, часто с периспермом. 3 порядка.

Гвоздичные (Caryophyllales) Происходят, вероятно, от лютиковых, с которыми наиболее ясно выражены связи у семейства лаконосовых. Важнейшие семейства: лаконосовые (Phytolaccaceae), никтагиновые (Nyctaginaceae), аизооновые (Aizoaccae), кактусовые (Cactaceae), портулаковые (Portulacaceae), гвоздичные (Caryophyllaceae), амарантовые (Amaranthaceae) и маревые (Chenopodiaceae).

Гречишные (Polygonales). Близки к гвоздичным и, вероятно, имеют с ними общее происхождение. Семейство гречишные (Polygonaceae).

Свинчатковые (Plumbaginales). По-видимому, имеют общее происхождение с гвоздичными. Семейство свинчатковые (Plumbaginaceae).

Подкласс 5. Дилленииды (Dilleniidae). Деревья, кустарники или травы. Листья цельные или расчленённые. Устьица различных типов, большей частью без побочных клеток. Сосуды всегда имеются; членики сосудов с лестничной или простой перфорацией. Цветки обоеполые или однополые, с двойным околоцветником или, реже, безлепестные; у более примитивных семейств околоцветник часто спиральный или спироциклический. Андроцей, когда он состоит из многих тычинок, развивается в центрифугальной последовательности. Зрелая пыльца двухклеточная или, реже, трёхклеточная, трёхбороздная или производная от этого типа. Гинецей апокарпный или, чаще, ценокарпный. Семязачатки обычно с двойным интегументом и большей частью крассинуцеллятные. Семена чаще с эндоспермом. 14 порядков.

Диллениевые (Dilleniales). Связующее звено между магнолиевыми, с одной стороны, и чайными и фиалковыми — с другой. Семейство диллениевые (Dilleniaceae).

Пионовые (Paeoniales). Близки к диллениевым. Семейство пионовые (Paeoniaceae).

Чайные (Theales). Близки к диллениевым и, вероятно, произошли от примитивных их представителей. Важнейшие семейства: охновые (Ochnaceae), диптерокарповые (Dipterocarpaceae), чайные (Theaceae) и зверобойные (Hypericaceae, или Guttiferae).

Фиалковые (Violales). Близки к чайным, с которыми имеют общее происхождение от диллениевых. Важнейшие семейства: флакуртиевые (Flacourtiaceae), фиалковые (Violaceae), ладанниковые (Cistaceae), страстоцветные (Passifloraceae), кариковые, или папаевые (Caricaceae), и тыквенные (Cucurbitaceae).

Бегониевые (Begoniales). Происходят, вероятно, от фиалковых. Семейства: датисковые (Datiscaceae) и бегониевые (Begoniaceae).

Каперсовые (Capparales). Происходят от примитивных представителей порядка фиалковых. Важнейшие семейства: каперсовые (Capparaceae), крестоцветные (Brassicaceae, или Cruciferae) и резедовые (Resedaceae).

Гребенщиковые, или тамарисковые (Tamaricales). Происходят, вероятно, от фиалковых, но очень специализированы. Семейства: гребенщиковые (Tamaricaceae), фукьериевые (Fouquieriaceae) и франкениевые (Frankeniaceae).

Ивовые (Salicales). Происходят от флакуртиевых, вероятнее всего, от предков типа современного рода идезия (Idesia). Семейство ивовые (Salicaceae).

Вересковые (Ericales). Близки к чайным и имеют общее с ними происхождение от диллениевых, с которыми тесно связаны через примитивное семейства актинидиевых. Важнейшие семейства: актинидиевые (Actinidiaceae), клетровые (Clethraceae), вересковые (Ericaceae), водяниковые (Empetraceae), эпакрисовые (Epacridaceae), диапенсиевые (Diapensiaceae) и цирилловые (Cyrillaceae).

Эбеновые (Ebenales). Происходят от чайных. Важнейшие семейства: стираксовые (Styracaceae), эбеновые (Ebenaceae) и сапотовые (Sapotaceae).

Первоцветные (Primulales). Близки к эбеновым и имеют общее с ними происхождение от чайных. Важнейшие семейства: мирзиновые (Myrsinaceae) и первоцветные (Primulaceae).

Мальвовые, или просвирниковые (Malvales). Произошли, возможно, от какой-то промежуточной группы между примитивными чайными и фиалковыми. Важнейшие семейства: липовые (Tiliaceae), стеркулиевые (Stercliliaceae), бомбаксовые (Bombacaceae) и мальвовые (Malvaceae).

Молочайные (Euphorbiales). Обнаруживают тесные связи как с мальвовыми, так и с фиалковыми. Произошли, вероятно, от какой-то вымершей промежуточной группы между этими порядками. Важнейшие семейства: самшитовые (Buxaceae), дафнифилловые (Daphniphyllaceae) и молочайные (Euphorbiaceae).

Волчниковые (Thymelaeales). Имеют много общего с молочайными, к которым очень близки, и меньше — с порядком мальвовых. Все 3 порядка имеют общее происхождение. Семейство волчниковые (Thymelaeaceae).

Подкласс 6. Розиды (Rosidae). Деревья, кустарники или травы. Листья цельные или расчленённые. Устьица различных типов, чаще всего без побочных клеток или с двумя побочными клетками. Сосуды имеются; членики сосудов с лестничной или чаще с простой перфорацией. Цветки обоеполые, с двойным околоцветником или безлепестные. Андроцей, когда он состоит из многих тычинок, развивается в центрипетальной последовательности. Зрелая пыльца чаще двухклеточная; оболочка пыльцевых зёрен трёхбороздная или производная от этого типа. Гинецей апокарпный или ценокарпный. Семязачатки обычно с двойным интегументом и крассинуцеллятные. Семена с эндоспермом или без него. Более 20 порядков.

Камнеломковые (Saxifragales). Через семейства кунониевые и близкие к нему семейства связаны с диллениевыми и, вероятно, имеют общее с ними происхождение. Важнейшие семейства: кунониевые (Cunoniaceae), эскаллониевые (Escalloniaceae), крыжовниковые (Grossulariaceae), гортензиевые (Hydrangeaceae), питтоспоровые (Pittosporaceae), толстянковые (Crassulaceae) и камнеломковые (Saxifragaceae).

Розовые, или розоцветные (Resales). Близки к камнеломковым, с которыми имеют, скорее всего, общее происхождение. Основное семейство — розоцветные (Rosaceae).

Непентовые (Nepenthales). Происходят, вероятно, от камнеломковых. Семейства: росянковые (Droseraceae) и непентовые (Nepenthaceae).

Подостемовые (Podostemales). Близки к камнеломковым и особенно к толстянковым. Травы, часто ничтожной величины, приспособлены к жизни в быстро текущей воде. семейства подостемовые (Podostemaceae).

Бобовые (Fabales). Наиболее близки к примитивным представителям порядка камнеломковых, но значительно более подвинуты. Одно семейства бобовые (Fabaceae, или Leguminosae), которое часто подразделяют на самостоятельные семейства: мимозовые (Mimosaceae), цезальпиниевые (Caesalpiniaceae) и собственно бобовые, или мотыльковые (Fabaceae, или Papilionaceae).

Коннаровые (Connarales). Имеют много общего с камнеломковыми, особенно с семейства кунониевых, а отчасти также с бобовыми. семейства коннаровые (Connaraceae).

Протейные (Proteales). Очень изолированный порядок, филогенетические связи которого не вполне ясны. По химическим особенностям напоминают бобовые, а по морфологическим имеют больше всего общего с примитивными камнеломковыми. Все 3 порядка, вероятно, общего происхождения. семейства протейные (Proteaceae).

Миртовые (Myrtales). Происходят, вероятно, от камнеломковых. Важнейшие семейства: дербенниковые (Lythraceae), соннератиевые (Sonneratiaceae), гранатовые (Punicaceae), ризофоровые (Rhizophoraceae), комбретовые (Combretaceae), миртовые (Myrtaceae), меластомовые (Melastomataceae), кипрейные (Onagraceae) и лецитисовые (Lecythidaceae).

Хвостниковые (Hippuridales). Близки к миртовым. Семейства: сланоягодниковые (Haloragaceae), гуннеровые (Gunneraceae) и хвостниковые (Hippuridaceae).

Рутовые (Rutales). Происходят, вероятно, от примитивных камнеломковых. Важнейшие семейства: анакардиевые (Anacardiaceae), бурзеровые (Burseraceae), симарубовые (Simaroubaceae), рутовые (Rutaceae) и мелиевые (Meliaceae).

Сапиндовые (Sapindales). Близки к рутовым. Важнейшие семейства: клекачковые (Staphyleaceae), кленовые (Aceraceae), сапиндовые (Sapindaceae) и конскокаштановые (Hippocastanaceae).

Гераниевые (Geraniales). Близки к рутовым, преобладают травы. Важнейшие семейства: льновые (Linaceae), эритроксиловые, или кокаиновые (Erythroxylaceae), парнолистниковые (Zygophyllaceae), кисличные (Oxalidaceae), гераниевые (Geraniaceae), настурциевые (Tropaeolaceae) и бальзаминовые (Balsaminaceae).

Истодовые (Polygalales). Тесно связаны с гераниевыми, особенно через семейства мальпигиевых, которое может быть почти с одинаковым основанием в любом из этих порядков. Важнейшие семейства: мальпигиевые (Malpighiaceae), вохизиевые (Vochysiaceae) и истодовые (Polygalaceae).

Кизиловые (Cornales). Происходят от примитивных камнеломковых. Важнейшие семейства: давидиевые (Davidiaceae), ниссовые (Nyssaceae), кизиловые (Cornaceae), гарриевые (Garryaceae), алангиевые (Alangiaceae) и мастиксиевые (Mastixiaceae).

Аралиевые (Araliales). Очень близки к кизиловым, но более подвинуты. Семейства: аралиевые (Araliaceae) и зонтичные (Apiaceae, или Umbelliferae).

Бересклетовые (Celastrales). Происходят, вероятно, от наиболее примитивных камнеломковых. Важнейшие семейства: падубовые (Aquifoliaceae), икациновые (Icacinaceae) и бересклетовые (Celastraceae).

Крушиновые (Rhamnales). Близки к бересклетовым. Важнейшие семейства: крушиновые (Rhamnaceae) и виноградовые (Vitaceae).

Маслиновые (Oleales). Связаны с бересклетовыми и, вероятно, имеют общее с ними происхождение от камнеломковых. Семейство маслиновые (Oleaceae).

Санталовые (Santalales). Примитивные представители близки к примитивным семействам порядка бересклетовых. Оба порядка имеют, вероятно, общее происхождение. Важнейшие семейства: олаксовые (Olacaceae), санталовые (Santalaceae), ремнецветниковые (Loranthaceae), омеловые (Viscaceae) и баланофоровые (Balanophoraceae).

Лоховые (Elaeagnales). Изолированный в систематическом отношении порядок, родственные связи которого не вполне ясны. Общие черты с волчниковыми, миртовыми, крушиновыми и даже с протейными, но, возможно, имеет независимое происхождение от камнеломковых. семейства лоховые (Elaeagnaceae).

Подкласс 7. Астериды (Asteridae). Деревья, кустарники или чаще травы. Листья цельные или расчленённые. Устьица большей частью с двумя, четырьмя (часто) или шестью (редко) побочными клетками. Сосуды всегда имеются; членики сосудов с лестничной или чаще с простой перфорацией. Цветки обоеполые, почти всегда сростнолепестные. Тычинок обычно столько же, сколько долей венчика или меньше. Зрелая пыльца трёх- или двухклеточная; оболочка пыльцевых зёрен трёхбороздная или производная от этого типа. Гинецей ценокарпный, по-видимому, морфологически всегда паракарпный. Семязачатки с простым интегументом и тенуинуцеллятные или редко крассинуцеллятные. Семена с эндоспермом или без него. 7 порядков.

Ворсянковые (Dipsacales). Примитивные представители порядка имеют много общего с кизиловыми, но гораздо теснее связаны с порядком камнеломковых, от примитивных представителей которого, по всей вероятности, происходят. Семейства: жимолостные (Caprifoliaceae), адоксовые (Adoxaceae), валериановые (Valerianaceae), ворсянковые (Dipsacaceae).

Горечавковые (Gentianales). Имеют общее происхождение с ворсянковыми. Важнейшие семейства: логаниевые (Loganiaceae), мареновые (Rubiaceae), кутровые (Apocynaceae), ластовневые (Asclepiadaceae) и горечавковые (Gentianaceae).

Синюховые (Polemoniales). Близки к горечавковым, но более подвинуты. Важнейшие семейства: вьюнковые (Convolvulaceae), повиликовые (Cuscutaceae), синюховые (Polemoniaceae), водолистниковые (Hydrophyllaceae) и бурачниковые (Boraginaceae).

Норичниковые (Scrophulariales). Близки к синюховым, с которыми имеют общее происхождение. Важнейшие семейства: паслёновые (Solanaceae), буддлеевые (Buddlejaceae), норичниковые (Scrophulariaceae), бигнониевые (Bignoniaceae), кунжутовые (Pedaliaceae), геснериевые (Gesneriaceae), заразиховые (Orobanchaceae), пузырчатковые (Lentibulariaceae), акантовые (Acanthaceae) и подорожниковые (Plantaginaceae).

Губоцветные (Lamiales). Очень близки к норичниковым и, вероятно, происходят непосредственно от них. Важнейшие семейст

Цвет минералов

Цвет минералов, окраска минералов, одно из важнейших физических свойств минералов, отражающее характер взаимодействия электромагнитного излучения видимого диапазона с электронами атомов, молекул и ионов, входящих в состав кристаллов, а также с электронной системой кристалла в целом (см. Свет). В минералогии окраска — один из главных диагностических признаков природных соединений, имеющий большое значение в геолого-поисковой практике и для определения минералов. Цвет драгоценных и поделочных камней является одной из основных качественных (ювелирных) их характеристик. Различают Ц. м. в кристаллах и штуфах, в прозрачных шлифах (под микроскопом), в полированных аншлифах (в отражённом свете), т. н. цвет черты (тонкого порошка минерала) и т.д.

При описании Ц. м. обычно прибегают к сравнительной оценке, сопоставляя его с цветом каких-либо широко известных предметов или веществ (индигово-синий, яблочно-зелёный, лимонно-жёлтый, кроваво-красный и т.п.) или минеральных "цветовых эталонов" (киноварно-красный, изумрудно-зелёный и др.). Эталонами для характеристики цвета рудных минералов служат цвета металлов или сплавов — оловянно-белый (арсенопирит), стально-серый (молибденит), латунно-жёлтый (халькопирит), медно-красный (самородная медь) и т.д. Разрабатываются методы объективной оценки Ц. м. (особенно драгоценных камней) с помощью стандартных колориметрических характеристик (см. Цветовые измерения). Многие минералы обладают свойством менять свой цвет (особенно в поляризованном свете) по различным кристаллографическим направлениям (см. Плеохроизм)или в зависимости от цветовой температуры освещающего их источника излучения.

Выделяются 3 основные группы Ц. м. Идиохроматическая (собственная) окраска минералов обусловлена особенностями входящих в их состав химических элементов (видообразующих или примесных, играющих роль хромофоров), характером электронной, т. н. зонной (см. Зонная теория), структуры кристаллов, а также наличием дефектов в кристаллах (вакансий, межузельных атомов и т.п.). По типу оптического поглощения различают несколько подгрупп идиохроматических окрасок.

Окраска металлических и ковалентных соединений (самородные металлы, сульфиды и их аналоги и др.) обусловлена межзонными оптическими переходами электронов и связанными с ними максимумами отражения (металловидные цвета — пирит, золото и др.) или фундаментальной полосой поглощения (киноварь, аурипигмент, куприт и т.д.).

Окраска, обусловленная электронными переходами между различными ионами ("переносом заряда"), в том числе между ионом металла и лигандами и между разнозарядными ионами металлов. Таковы, например, минералы трёхвалентного железа (перенос заряда O2- ® Fe3+); хроматы, ванадаты и молибдаты — крокоит, ванадинит, вульфенит и др. (перенос заряда O2- ® Cr6+, V5+, Mo6+); минералы, содержащие одновременно разнозарядные ионы Fe2+ и Fe2+ (кордиерит, вивианит, аквамарин и др.).

Окраска, связанная с ионами переходных металлов (Ti, V, Cr, Mn, Fe, Co, Ni, Cu), характерна для изумруда, рубина, рубеллита, родонита, хризолита, малахита. Лантаноиды и актиноиды являются хромофорами минералов редкоземельных элементов и уранила. Окраска обусловлена электронными переходами между d- или f-уровнями хромофорных ионов.

Радиационная окраска связана с образованием под действием естественных ионизирующих излучений электронно-дырочных центров окраски (синяя и фиолетовая окраски галита, флюорита, жёлтая и дымчатая — кварца, кальцита и др.).

Аллохроматическая окраска вызвана механическими примесями, чаще всего включениями окрашенных минералов, иногда — пузырьков жидкостей, газов и т.п. Так, оранжево-красный цвет сердолика обусловлен включениями гидроокислов железа, зелёный цвет празема (разновидности кварца) связан с включениями иголочек актинолита или хлорита.

Псевдохроматическая окраска обусловлена процессами дифракции света и интерференции света, а также рассеяния, преломления, полного внутреннего отражения падающего белого света, связанными с особенностями строения минеральных образований (закономерное чередование фаз различного состава в иризирующих лабрадорах и перистеритах, солнечном и лунном камнях; глобулярное строение опалов и т.п.) или состоянием поверхностного слоя кристаллов (различного рода побежалости — радужные плёнки на борните, халькопирите, пирите, ковеллине и др.). Исследование природы окраски минералов помогает судить о кристаллохимических и генетических особенностях минералов и имеет решающее значение для синтеза высококачественных аналогов природных самоцветов.

Лит.: Марфунин А. С., Введение в физику минералов, М., 1974; Платонов А. Н., Природа окраски минералов, К., 1976.

А. Н. Платанов, Т. Б. Здорик.

Цвет Михаил Семенович

Цвет Михаил Семенович (14.5.1872, Асти, Италия, — 26.6.1919, Воронеж), русский ботаник-физиолог и биохимик. Окончил Женевский университет (1893). В 1896 получил степень доктора Женевского университета за работу "Исследование физиологии клетки" (опубликована в 1896) и, приехав в Россию, начал изучать хлорофилл в фитофизиологической лаборатории Петербургской АН по предложению А. С. Фаминцына. С 1897 преподавал ботанику на курсах, организованных П. Ф. Лесгафтом при петербургской биологической лаборатории. В 1901 защитил магистерскую диссертацию "Физико-химическое строение хлорофильного зерна"; с 1902 ассистент кафедры физиологии и анатомии растений Варшавского университета, с 1908 преподаватель ботаники Варшавского политехнического института. В 1910 защитил докторскую диссертацию "Хромофиллы в растительном и животном мире", удостоенную академия, премии (1911). С 1917 профессор Юрьевского (ныне Тартуский) университета, с 1918 профессор Воронежского университета. Основные труды по изучению пластид и пигментов растений и разработке методов их исследований. Особое значение имеет созданный Ц. метод разделения веществ, основанный на избирательном поглощении отдельных компонентов анализируемой смеси различными адсорбентами, изложенный им впервые в докладе "О новой категории адсорбционных явлений и о применении их к биохимическому анализу" (1903), а затем развитый в работах 1906—10. Этот метод позволил Ц. доказать неоднородность зелёного и жёлтого пигментов листьев растений и получить в чистом виде хлорофиллины a, b и g (ныне называемые хлорофиллами a, b и с) и ряд изомеров ксантофилла. Открытие Ц. получило широкое применение и признание с начала 30-х гг. при разделении и идентификации различных пигментов, витаминов, ферментов, гормонов и др. органических и неорганических соединений и послужило основой для создания ряда новых направлений хроматографии. Для физиологии растений существенны выводы Ц. о природе хлоропластов, состоянии хлорофилла в растении, механизме фотосинтеза и др.

Соч.: Хроматографический адсорбционный анализ. Избр. работы, М., 1946.

Лит.: Сенченкова Е. М., Михаил Семенович Цвет, М., 1973 (лит.).

Е. М. Сенченкова.

Цвет моря

Цвет моря, цвет, воспринимаемый глазом, когда наблюдатель смотрит на поверхность моря, Ц. м. зависит от цвета морской воды, цвета неба, количества и характера облаков, высоты Солнца над горизонтом и др. причин.

Понятие Ц. м. следует отличать от понятия цвет морской воды. Под цветом морской воды понимают цвет, воспринимаемый глазом при отвесном осмотре морской воды над белым фоном. От поверхности моря отражается лишь незначительная часть падающих на неё световых лучей, остальная их часть проникает вглубь, где поглощается и рассеивается молекулами воды, частицами взвешенных веществ и мельчайшими пузырьками газов. Отражённые и выходящие из моря рассеянные лучи и создают Ц. м. Молекулы воды рассеивают сильнее всего синий и зелёные лучи. Взвешенные частицы почти одинаково рассеивают все лучи. Поэтому морская вода с малым количеством взвесей кажется сине-зелёной (цвет открытых частей океанов), а со значительным количеством взвесей — желтовато-зелёной (например, Балтийское море). Теоретическая сторона учения о Ц. м. разработана В. В. Шулейкиным и Ч. В. Раманом.

Цветная аэрофотосъёмка

Цветная аэрофотосъёмка, фотографирование местности с воздуха в целях воспроизведения в натуральных цветах её ландшафтов или отдельных объектов. Благодаря передаче при Ц. а. цветовых различий местности увеличивается информативность аэроснимков и возможность их дешифрирования. Ц. а. осуществляется путём съёмки на многослойной аэроплёнке сразу в синей, зелёной и красной зонах видимой части спектра электромагнитных волн (см. Цвет) или на трёх отдельных аэроплёнках с последующим оптическим совмещением соответственно окрашивающихся при фотообработке однозональных изображений в общее цветное. Последний способ позволяет получать наиболее точное и дифференцированное цветовоспроизведение деталей, но в целом он пока сложнее и дороже. К Ц. а. иногда относят и воздушное фотографирование в преобразованных условных цветах — т. н. спектрозональную аэрофотосъёмку.

Для Ц. а. из многослойных аэроплёнок используют негативные и обратимые плёнки (см. Фотография). Цветная негативная аэроплёнка предназначена для массового изготовления отпечатков и позволяет вести съёмку при довольно широком диапазоне условий фотографирования, поскольку цветовоспроизведение на ней можно корректировать в процессе фотообработки. Цвета красителей для каждого слоя этой аэроплёнки подбираются как дополнительные к цвету лучей зоны его спектральной чувствительности (см. Дополнительные цвета). Применение цветной обратимой аэроплёнки даёт возможность непосредственно получать позитивное изображение местности, причём со сравнительно лучшей передачей естественных цветовых контрастов. Вместе с тем Ц. а. на этой аэроплёнке выполнима при строго ограниченных условиях и рассчитана на непосредственное использование при дешифрировании самого оригинального аэрофильма или изготовление с отдельных его кадров небольшого количества позитивов. Ц. а. производится теми же аэрофотоаппаратами (кроме сверхширокоугольных) и с тех же высот, что плановая и перспективная аэрофотосъёмка на черно-белых фотоматериалах. Для повышения изобразительных свойств цветных аэроснимков аэрофотоаппараты снабжают объективами, улучшенными в отношении хроматической аберрации, и блендами — приспособлениями для уменьшения светорассеяния при съёмке. Проявление цветных аэрофильмов, как правило, автоматизировано. Фотопечать выполняется на бумаге или плёнке, а для обеспечения высокоточных измерений— на стекле. При цветной фотопечати применяются копировальные электронные приборы-полуавтоматы. Для картографических работ с цветных аэрофильмов изготавливают не только цветные отпечатки, но и черно-белые (в качестве промежуточных материалов). При изучении по цветным аэроснимкам ландшафтов или отдельных объектов местности, а также при составлении по ним различных карт используются обычные приборы для дешифрирования (преимущественно стереоскопы или интерпретоскопы), а также стереофотограмметрические приборы.

Цветная съёмка с воздуха впервые была осуществлена не аэрофотоаппаратом, а кинокамерой в 1936 одновременно в СССР (Ленинградское отделение ЦНИИ геодезии, аэросъёмки и картографии) и в Канаде. Для решения научных и хозяйственных задач собственно Ц. а. стала использоваться сразу после 2-й мировой войны 1939—45; значительное применение она получила к концу 50-х гг. 20 в. Ц. а. эффективна при общегеографическом изучении Земли (особенно её сезонных аспектов), геологическом картировании обнажённых территорий, лесоустройстве хвойно-лиственных насаждений, учёте древостоев, пораженных промышленными дымами или насекомыми-вредителями, создании почвенных карт культурных земель, обследовании посевов, изучении континентального шельфа (особенно рельефа, грунтов и растительности мелководий, загрязнённости воды, ледового режима), планировании переустройства городов, социально-экономических и археологических исследованиях и топографической съёмке густонаселённых районов. Цветное фотографирование используется и как новое средство изучения земной поверхности (а также происходящих на ней явлений) при съёмках из космоса.

Для сравнения цветных, спектрозональных и черно-белых аэроснимков см. рис. 7 и рис. к ст. Спектрозональная аэрофотосъемка и Цветная аэрофотосъемка.

Лит. см. при ст. Спектрозональная аэрофотосъёмка.

Л. М. Гольдман.