Твардовский Александр Трифонович

Твардовский Александр Трифонович [8(21).6.1910, хутор Загорье, ныне Починковский район Смоленской области, — 18.12. 1971, дачный посёлок близ Красной Пахры Московской области, похоронен в Москве], русский советский поэт и общественный деятель. Член КПСС с 1940. Сын сельского кузнеца. Учился в Смоленском педагогическом институте; в 1939 окончил Московский институт истории, философии и литературы (МИФЛИ). Писать стихи начал с раннего детства; с 1924 — селькор, печатавший в местных газетах корреспонденции, стихи, очерки. Судьба крестьянина в годы коллективизации — тема первых поэм Т. "Путь к социализму" (1931) и "Вступление" (1933), "Сборника стихов. 1930—1935" (1935), повести "Дневник председателя колхоза" (1932) — с наибольшей художественной силой воплотилась в поэме "Страна Муравия" (1936; Государственная премия СССР, 1941). Её герой Никита Моргунок не только наблюдает во время своих странствий картину "великого перелома", но н сам воплощает драму расставания с прежними надеждами и иллюзиями. В стиле поэмы своеобразно преломились символика и гиперболизм сказки; её язык богат образами, идущими от восприятия мира крестьянином. В лирике 30-х гг. (сборники "Сельская хроника", 1939; "Загорье", 1941, и др.) Т. стремился уловить изменения в характерах людей колхозной деревни, выразить владевшие ими чувства. Участие в советско-финляндской войне 1939—40 в качестве корреспондента военной печати подготовило обращение Т. к теме советского воина: цикл стихов "В снегах Финляндии" (1939—40), прозаические записи "С Карельского перешейка" (опубликованы 1969). Во время Великой Отечественной войны 1941—45 Т. работал во фронтовых газетах, публикуя в них стихи ("Фронтовая хроника") и очерки. В поэме "Василий Тёркин (Книга про бойца)" (1941—45; Государственная премия СССР. 1946) фольклорная фигура бойкого, бывалого солдата претворена в эпически ёмкий образ, воплотивший глубину, значительность, многообразие мыслей и чувств так называемых рядовых, простых людей военного времени. Богатству натуры героя отвечает гибкость избранного поэтом жанра; картины, исполненные огромного трагизма, перемежаются проникновенными лирическими отступлениями или лукавой, сердечной шуткой. "Это поистине редкая книга, — писал И. А. Бунин. — Какая свобода, какая чудесная удаль, какая меткость, точность во всём и какой необыкновенный народный солдатский язык — ни сучка, ни задоринки, ни единого фальшивого, готового, то есть литературно-пошлого слова!" ("Литературный Смоленск", 1956, книга 15, с. 325—26). Ярко выразившая нравственные идеалы народа, книга получила всенародную известность, вызвала многочисленные подражания, стихотворные "продолжения".

В послевоенные годы Т. всё глубже и разностороннее осмысливает исторические судьбы народа, "мир большой и трудный". В поэме "Дом у дорога" (1946; Государственная премия СССР, 1947) с огромной трагической силой изображена судьба солдата и его семьи, угнанной в Германию. Образ Анны, картины её горького материнства на чужбине достигают большой силы обобщения, символизируя непобедимость жизни в её борьбе с насилием, смертью. Осознанию всей меры жертв и подвигов народа посвящены и многим из послевоенных стихотворений Т.: "Я убит подо Ржевом", "В тот день, когда окончилась война" и др. Широким по охвату лирико-публицистических произведений явилась поэма Т. "За далью — даль" (1953—60; Ленинская премия, 1961), где путевой дневник перерастает в страстную исповедь сына века. Книга Т. многосторонне и многокрасочно отразила общественное умонастроение 50-х гг. Стремясь рельефно показать современный облик народа, Т. искусно чередует "общие" и "крупные" планы; так, рядом с главами о больших событиях и переменах в жизни страны ("На Ангаре", "Так это было") стоят главы "Друг детства" и "Москва в пути" — рассказы о судьбах отдельных людей, каждый из которых — частичка народа, великого потока истории. Но основную "партию" в книге ведёт сам автор, который поверяет читателю волнующие его мысли и чувства. В сатирической поэме "Тёркин на том свете" (1963), встреченной разноречивыми, в том числе отрицательными, откликами печати, по словам самого автора представлены "... в сатирических красках те черты нашей действительности — косность, бюрократизм, формализм, — которые мешают нашему продвижению вперед...". Приёмами лирической летописи, с большой глубиной и драматической силой запечатлевшей перемены в жизни народа, вечный и всегда по-новому осмысливаемый круговорот природы и многообразные состояния человеческой души, характеризуются сборники "Стихи из записной книжки" (1961) и "Из лирики этих лет. 1959—1967" (1967; Государственная премия СССР, 1971), цикл "Из новых стихотворений" ("Новый мир", 1969, № 1). Напряжённые раздумья о жизни, времени, людях характерны и для прозы Т. (книга "Родина и чужбина", 1947; рассказ "Печники", 1958, и др.); в ней особенно отчётливо выступает свойственная Т. обострённость восприятия действительности в мозаичности и нередко противоречивости её проявлений. Вдумчивым критиком, верным традициям классической литературы, проявил себя Т. в книге "Статьи и заметки о литературе" (1961), "Поэзия Михаила Исаковского" (1969), в статьях о творчестве С. Я. Маршака, И. А. Бунина, в речи о Пушкине, в выступлениях на 21-м и 22-м съездах партии, на 3-м съезде советских писателей.

Народность и доступность поэзии Т., правдиво и страстно запечатлевшей многие ключевые события народной истории, достигаются богатыми и разнообразными художественными средствами. Простой народный слог органически сплавлен в поэзии Т. с высокой языковой культурой, идущей от традиций А. С. Пушкина и Н. А. Некрасова, лучших достижений русской прозы 19—20 вв. Реалистическая чёткость образа, интонационная гибкость, богатство и смелое варьирование строфического построения стихов, умело и с тонким чувством меры применяемая звукопись — всё это сочетается в стихах Т. экономно и гармонично, делая его поэзию одним из самых выдающихся явлений советской литературы. Произведения Т. переведены на многие языки народов СССР и иностранные языки. Глубокий след оставила интенсивная общественно-литературная деятельность Т., являвшаяся прямым продолжением его художественного творчества. Главный редактор журнала "Новый мир" (1950—54 и 1958—70), секретарь правления СП СССР (1950—54 и 1959—71), вице-президент Европейского сообщества писателей (1963—68). Депутат Верховного Совета РСФСР 2, 3, 5, 6-го созывов. На 19-м съезде КПСС (1952) избран членом Центральной ревизионной комиссии КПСС, на 22-м съезде (1961) — кандидат в члены ЦК КПСС. Награжден 3 орденами Ленина, 4 др. орденами, а также медалями.

Соч.: Собр. соч., т. 1—5, М., 1966—71; Стихотворения. Поэмы. [Вступ. ст. и прим. А. Македонова], М., 1971; О литературе, М., 1973; Василий Теркин. Книга про бойца, М., 1976.

Лит.: Александров В., Три поэмы Твардовского, в его кн.: Люди и книги, М., 1956; Любарёва Е., Александр Твардовский. Критико-биографический очерк, М., 1957; её же, Поэма А. Твардовского "За далью — даль", М., 1962; Выходцев П., Александр Твардовский, М., 1958; его же, А. Т. Твардовский. Семинарий, Л., 1960; Маршак С., Ради жизни на земле. Об А. Твардовском, М., 1961; Макаров А., Александр Твардовский и его "Книга про бойца", "За далью — даль", в его кн.: Идущим вослед, М., 1969; Турков А., Александр Твардовский, 2 изд., М., 1970; Лакшин В., Новая лирика Твардовского, в кн.: День поэзии, М., 1971.

А. М. Турков.

Твен Марк

Твен (Twain) Марк [псевдоним; настоящее имя Сэмюэл Ленгхорн Клеменс (Clemens)] (30.11.1835, Флорида, штат Миссури, — 21.4.1910, Реддинг, штат Коннектикут), американский писатель. Детство провёл в городке Ханнибал (Миссисипи). С 1853 скитался по стране, был лоцманом на Миссисипи, старателем на серебряных приисках Невады, золотоискателем в Калифорнии, журналистом. Широкую известность получил рассказ Т. на фольклорный сюжет "Знаменитая скачущая лягушка из Калавераса" (1865). В 1867 Т. побывал в Европе и Палестине; книга об этой поездке "Простаки за границей" (1869) знаменовала триумфальное вступление фольклорного юмора в большую литературу. "Простаки" полны гордости за свою страну, не знавшую феодального угнетения, раболепства и безземелья; юмор служит запальчивому утверждению национальной культуры. В 1872 Т. выпустил книгу о Дальнем Западе — "Закалённые" (рус. пер. под названием "Налегке", 1959). Это автобиографические очерки, написанные также от лица "простака", мастера смешной похвальбы и нарочито жестоких сравнений. В романе "Позолоченный век" (1873), написанном совместно с Ч. Д. Уорнером, отразилась эпоха спекуляций и афер после Гражданской войны в США, время "бешеных денег" и обманутых ожиданий. Порой сатира молодого Т. горька, но большинство его всемирно известных рассказов, написанных в начале 70-х гг. и вошедших в сборнике "Старые и новые очерки" (1875), заразительно веселы. Окрашивающий их буйный юмор передаёт ощущение ещё не растраченных сил американской демократии, умеющей посмеяться над собственными слабостями. Маска "простака" и приём комического приведения к абсурду помогают вскрыть алогизм привычного. В 1871—91 Т. жил в Хартфорде (штат Коннектикут). Писателю "границы" трудно дышалось в атмосфере Новой Англии с её литературными и моральными табу, буржуазные круги вызывали у него всё большее критическое отношение ("Письмо ангела-хранителя", 1887, опубликовано 1946).

В 1875 в "Атлантик мансли" ("Atlantic Monthly") Т. напечатал очерки "Старые времена на Миссисипи"; в 1876 опубликованы "Приключения Тома Сойера"; в 1883 вышла книга "Жизнь на Миссисипи", где к очеркам о старых временах добавлена современного хроника; в 1884 в Англии (в США в 1885) появились "Приключения Гекльберри Финна". Дистанция между прошлой и нынешней Америкой ощутима во всех этих книгах. Освобождаясь от иллюзий, Т. и в американской демократии прошлого видит немало жестокого и дикого. В его книгах о прошлом, отмеченных критической остротой и углублением в повседневность, возникла концепция Америки, поныне остающаяся современной. В автобиографическом "Томе Сойере" мир детства защищает себя от натиска благопристойности и благочестия. В "Жизни на Миссисипи" прославлена "великая лоцманская наука". Начало и конец романа о Геке посвящены тем же мальчишеским приключениям, что и "Том Сойер", но здесь это только обрамление: в основной части книги острокритически изображается американская глушь, с её атмосферой повседневной жестокости и корысти. Роман написан от лица Гека, американская жизнь даётся в его восприятии. Образ бездомного героя углубился — прежнее его простодушие сочетается с редкой отзывчивостью. В совершенно реальном и одновременно поэтическом образе беглого негра Джима тоже есть внутренняя перспектива: по-детски доверчивый знаток примет наделён душевной щедростью и деликатностью. Оба этих простодушных изгоя, плывущих по чистой реке мимо неприглядных городишек, близки писателям 20 в. У. Фолкнер назвал их в числе своих любимых героев. Известно высказывание Э. Хемингуэя: "Вся современная американская литература вышла из одной книги Марка Твена, которая называется "Гекльберри Финн"" (Собр. соч., том 2, М., 1968, с. 306). Эти слова имеют в виду и глубокое постижение Америки через провинцию, и поэзию книги, контрастирующую с фальшью и сонным благополучием, и свободную композицию романа, и смелое обновление литературного языка, включающего просторечие, сленг, негритянские диалектизмы.

Всю жизнь Т. занимала проблема средневековья. Иерархическое общество прошлого, возмущавшее его демократическую натуру, представлялось ему гротескным. В 1882 Т. опубликовал повесть "Принц и нищий", где аллегорический рассказ задорно отрицает мир социальных привилегий и перегородок. Боевой плебейский оттенок несёт остропародийный роман Т. "Янки из Коннектикута при дворе короля Артура" (1889).

В начале 90-х гг. в жизни Т. настала тяжёлая пора. Крах его издательской фирмы (1894) вынудил писателя лихорадочно много работать, предпринять годовое путешествие вокруг света (1895) с чтениями публичных лекций. Новый удар нанесла смерть дочери. Многие страницы, написанные Т. в последние два десятилетия его жизни, пропитаны чувством горечи. В нередко мизантропических суждениях героя повести "Простофиля Вильсон" (1894) вывернуты наизнанку традиционные верования американских мещан. Горькое разочарование в буржуазной демократии заставляет позднего Т. обнажать иллюзорность воспринятых с детства идеалов и норм. В повести "Таинственный незнакомец" (опубликована 1916) он пересматривает основные мотивы своего творчества. Вольное детство у реки в духе "Тома Сойера" вписано тут в мрачную картину средневековых нравов. Глумящиеся над человеческим самообольщением речи Сатаны впитали безысходную горечь Т., но в его уста вложены и знаменитые слова об оружии смеха, перед которым ничто не устоит.

В 20 в. Т. — признанный классик мировой литературы и при этом подлинно национальный писатель, открыватель той Америки, где трагическое соседствует с комическим, ужасное — с поэтическим. Один из величайших юмористов нового времени, Т. — также любимый детский писатель. В России Т. оценили рано: в 1872 в "Биржевых ведомостях" появился перевод его рассказа о скачущей лягушке, в 1874 в "Отечественных записках" печатался "Позолоченный век" (под названием "Мишурный век"). О Т. тепло отзывались М. Горький, А. Куприн. В СССР традиционная популярность Т. ещё более упрочилась.

Соч.: Writings, v. 1-25, N. Y.—L., 1907-18; Writings, v. 1—37, N. Y., 1922-25; Letters, ed. by A. B. Paine, v. 1—2, N. Y.— L., 1917; Mark Twain's autobiography, v. 1—2, N. Y.— L., 1924; Mark Twain's notebook, N. Y.— L., 1935; в рус. пер.— Собр. соч. [Вступ. ст. М. Мендельсона], т. 1—12, М., 1959—61.

Лит.: Мендельсон М., Марк Твен, М., 1958; Старцев А., Марк Твен и Америка, [М., 1963]; Фонер Ф., Марк Твен-социальный критик, М., 1961; De Voto В. A., Mark Twain's America and Mark Twain at work, Boston, 1967; Geismar М., Mark Twain. An American prophet, Boston, 1970; Mark Twain: The critical heritage, L., 1971; Левидова И., Марк Твен. Библиографический указатель, М., 1974.

М. Б. Ландор.

Твенхофел Уильям Генри

Твенхофел (Twenhofel) Уильям Генри (16.4.1875, Ковингтон, штат Кентукки, — 4.1.1957), американский геолог, профессор (1921). Окончил Йельский университет (1908). Преподавал в университетах штатов Канзас (1910—45) и Висконсин (1916—45). В 1923—31 возглавлял комиссию по изучению осадочных отложений. Под его руководством и в значительной мере им самим составлена фундаментальная сводка "Учение об образовании осадков" (1925, рус. пер. 1936), в которой впервые были систематизированы и обобщены разрозненные ранее сведения о современных осадках и осадочных горных породах; сформулировал основные принципы седиментации. Занимался палеонтологией беспозвоночных.

Соч.: Principles of sedimentation, 2 ed., N. Y., 1950; Principles of invertebrate paleontology, 2 ed., N. Y., 1953 (совм. с R. Shrock).

Твёрдая пшеница

Твёрдая пшеница (Triticum durum), вид пшеницы с неломким, обычно остистым плотным колосом и голым стекловидным на изломе зерном различной окраски. Вид тетраплоидный: содержит в соматических клетках 28 хромосом. Степная засухоустойчивая культура с преобладающими яровыми формами. Используется для производства макаронных изделий, манной крупы и улучшения хлебопекарных качеств муки мягкой пшеницы. По площади посева занимает 2-е место среди пшениц (после мягкой пшеницы). Известно более 120 разновидностей Т. п., из них распространённые Гордеиформе, Мелянопус, Леукурум.

Твёрдая схема

Твёрдая схема, устаревшее название полупроводниковой интегральной микросхемы (см. Интегральная схема, Микроэлектроника).

Твердислав Михалкович

Твердислав Михалкович, новгородский посадник начала 13 в. Во время похода новгородского войска на Всеволода Чермного к Киеву (1214) Т. М. примирил князя Мстислава Мстиславича Удалого с новгородцами. Ориентируясь на смоленских Ростиславичей, Т. М. был решительным противником великого князя владимирского Юрия Всеволодовича и его брата переяславль-залесского князя Ярослава и активно участвовал в борьбе с ними в 1215—16. В 1218 князь Святослав Мстиславич, недовольный Т. М., пытался сместить его, однако новгородцы поддержали Т. М., сформулировавшего принцип суверенитета народа словами: "А вы, братье, в посадничестве и в князех волны есте". В 1220 после ссоры с новгородским князем Всеволодом Мстиславичем Т. М. отказался от посадничества и, устранившись от политической деятельности, ушёл в монастырь.

Лит.: Янин В. Л., Новгородские посадники, М., 1962.

Твёрдое тело

Твёрдое тело, одно из четырёх агрегатных состояний вещества, отличающееся от др. агрегатных состояний (жидкости, газов, плазмы) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около положений равновесия. Наряду с кристаллическим состоянием Т. т. (см. Кристаллы) существует аморфное состояние, в том числе стеклообразное состояние. Кристаллы характеризуются дальним порядком в расположении атомов. В аморфных телах дальний порядок отсутствует (см. Дальний порядок и ближний порядок).

Согласно законам классической физики, применимым к большинству Т. т., наинизшему энергетическому состоянию системы атомных частиц (атомов, ионов, молекул) соответствует периодическое расположение одинаковых групп частиц, то есть кристаллическая структура. Поэтому с термодинамической точки зрения аморфное состояние не является равновесным и с течением времени должно закристаллизоваться. Однако в обычных условиях это время может быть столь велико, что неравновесность не проявляется и аморфное тело практически устойчиво. Между кристаллическим Т. т. и жидкостью есть качественное различие (наличие у кристалла и отсутствие у жидкости дальнего порядка в расположении атомов). Между аморфным Т. т. и жидкостью различие только количественное: аморфное Т. т. можно рассматривать как жидкость с очень большой вязкостью (которую часто можно считать бесконечно большой).

Понятие "Т. т.", как и понятие "жидкость", имеет характер идеализации (модельности), точнее было бы говорить о "твердотельных" и "жидкостных" свойствах конденсированной среды. Например, с точки зрения упругих свойств твёрдым следует считать тело с отличным от 0 статическим модулем сдвига J (у жидкости J = 0). При рассмотрении пластических свойств твёрдым следует считать тело, необратимо деформируемое лишь при конечном надпороговом напряжении (у жидкостей, даже очень вязких, типа смол, пороговое напряжение необратимой деформации равно 0).

Все вещества в природе затвердевают при атмосферном давлении и температуре Т > 0 К, за исключением Не, который остаётся жидким при атмосферном давлении вплоть до Т = 0 К. Для кристаллизации Не необходимо давление 24 атм (при Т =1,5 К). Это уникальное свойство Не находит объяснение в квантовой теории Т. т. и жидкостей (см. Гелий, Квантовая жидкость).

При исследовании твёрдых растворов изотопов гелия (под давлением) обнаружено особое состояние вещества, занимающее промежуточное положение между кристаллом и квантовой жидкостью. Оно получило название квантового кристалла. У обычных кристаллов волновые свойства атомов приводят к существованию колебаний кристаллической решётки при Т = 0 К, у квантовых жидкостей эти свойства полностью разрушают кристаллическую структуру, а у квантовых кристаллов волновые свойства атомов, сохраняя выделенность узлов кристаллической решётки, допускают их перемещение (с узла на узел).

Т. т. — основной материал, используемый человеком. От кремнёвых орудий неандертальца до современных машин и механизмов — во всех технических приспособлениях, созданных человеком, используются различные свойства Т. т. Если на ранних ступенях развития цивилизации использовались механические свойства Т. т., которые непосредственно ощутимы человеком (твёрдость, масса, пластичность, упругость, хрупкость и т. п.), и Т. т. применялось лишь как конструкционный материал, то в современном обществе используется огромный арсенал физических свойств Т. т. (электрических, магнитных, тепловых и др.), как правило, не доступных непосредственному человеческому восприятию и обнаруживаемых только при лабораторных исследованиях.

Все свойства Т. т. могут быть поняты на основе знания его атомно-молекулярного строения, законов движения атомных (атомов, ионов, молекул) и субатомных (электронов, атомных ядер) частиц. Исследование свойств Т. т. и движения частиц в нём объединилось в большую область современной физики — физику Т. т., развитие которой стимулируется потребностями практики, главным образом техники. Физика Т. т. обладает специфическими методами исследования, руководящими идеями, использует определённый (часто изощрённый) математический аппарат. Оставаясь частью физики, физика Т. т. выделилась в самостоятельную научную дисциплину. Это проявляется, например, в существовании большого числа специализированных научных журналов (в СССР "Физика твёрдого тела", "Физика металлов и металловедение", "Физика и техника полупроводников" и др.) и институтов (Институт физики твёрдого тела АН СССР и др.). Приблизительно физиков мира работает в области физики Т. т. и почти всех научных физических публикаций относится к исследованию Т. т.

Квантовые представления в физике Т. т. Объяснение свойств Т. т. возможно лишь на основе квантовой механики. Квантовая теория кристаллов разработана весьма подробно, квантовая теория аморфных тел — слабее. Одним из главных результатов квантового подхода к исследованию свойств кристаллического Т. т. явилась концепция квазичастиц. Энергию кристалла вблизи основного состояния можно представить в виде суммы элементарных возбуждений, суммы энергий отдельных квазичастиц. Это позволяет ввести понятие "газа квазичастиц" и для исследования тепловых, магнитных и др. свойств Т. т. использовать методы квантовой физики газов. Макроскопические характеристики Т. т. при этом выражаются через характеристики квазичастиц (длина пробега, скорость, эффективная масса и т. п., см. ниже). Элементарные движения в аморфных телах значительно сложнее, чем в кристаллах. Поэтому не удаётся ввести наглядные понятия (аналогичные квазичастицам) для описания возбуждённых состояний аморфных тел, однако структура плотности этих состояний выяснена.

Можно сформулировать несколько характерных особенностей Т. т. как физических объектов, состоящих из огромного (макроскопического) числа атомных частиц и электронов. 1) Атомы, молекулы и ионы — структурные единицы Т. т., то есть энергия взаимодействия между ними мала по сравнению с энергией, которую надо затратить на разрушение самой структурной единицы (молекулы на атомы, атома на ион и электроны, атомного ядра на нуклоны). Однако энергия их взаимодействия велика по сравнению с энергией их теплового движения (в газах — обратное соотношение). В тех случаях, когда энергия теплового движения оказывается порядка или больше энергии взаимодействия между структурными единицами, в Т. т. происходит перестройка структуры (фазовый переход), приводящая к понижению свободной энергии системы (см. Термодинамика).

2) Согласно классическим законам, средняя энергия теплового движения частицы "kT и энергия возбуждения Т. т. "NkT, где N — число частиц, составляющих Т. т. Уменьшение энергии Т. т. с понижением его температуры идёт быстрее, чем предусматривает классическая физика: дискретный (квантовый) характер энергетического спектра Т. т. приводит к "вымораживанию" движений при Т ® 0 К, причём чем больше расстояние между уровнями энергии, тем при более высокой температуре "вымерзает" соответствующее движение. Поэтому различные движения в Т. т. существенны при различных температурах.

3) В кристаллическом Т. т. возможны статические возбуждённые состояния: частицы располагаются не совсем так, как им "положено" из соображений минимума энергии. Неправильное расположение атома или его отсутствие (см. Дефекты в кристаллах) приводят к большому повышению энергии взаимодействия атомов вблизи дефекта, однако в устойчивом состоянии неправильно расположенных атомов сравнительно мало. Аморфное тело, энергия которого больше, чем энергия соответствующего кристалла, как правило, устойчиво (метастабильно) из-за больших потенциальных барьеров (следствие ближнего порядка), отделяющих метастабильные положения атомов от стабильных.

4) Разнообразие сил, действующих между частицами, составляющими Т. т., приводит к тому, что в кристаллах при определённых условиях могут проявляться свойства газов, жидкостей, плазмы. Например, ферромагнетик при T = 0 К. — упорядоченная система ориентированных атомных магнитных моментов. При повышении температуры эта строгая ориентация нарушается тепловым движением, а при Т = Тс (Кюри точка) полностью исчезает и Т. т. переходит в парамагнитное состояние. Величина Тс связана с энергией Um взаимодействия между соседними магнитными моментами соотношением: kTc " Uм. При Т ³ Тс атомные магнитные моменты ведут себя, как "газ магнитных стрелок", например магнитная восприимчивость твёрдого парамагнетика имеет ту же температурную зависимость, что и газообразного (см. ниже). Др. пример: металл можно рассматривать как ионный остов, погруженный в электронную жидкость. Благодаря устойчивому положению ионов металл является Т. т., но часть электронов в нём не связана с определёнными узлами кристаллической решётки, это — электроны проводимости. Их взаимодействие друг с другом сближает свойства совокупности электронов проводимости металлов со свойствами квантовой жидкости. В некоторых случаях (например, под воздействием электромагнитного поля высокой частоты, которая превышает частоту столкновений электронов) электронная жидкость в проводниках ведёт себя, как плазма (см. Плазма твёрдых тел).

5) Движения атомных частиц в Т. т. весьма разнообразны и проявляются в различных свойствах Т. т. Все движения можно разбить на 3 типа: а) диффузия собственных или чужеродных атомов. Элементарный акт диффузии — флуктуационное перемещение атома из занятого им положения в соседнее — свободное. Как правило, время "оседлой" жизни атома значительно больше, чем время перемещения — атом совершает редкие случайные скачки, вероятность которых возрастает с ростом температуры. Диффузионное перемещение — сравнительно редкий пример классического движения атомов в Т. т. б) Коллективные движения частиц, простейший пример которых — колебания кристаллической решётки. Энергия колеблющихся атомов приближённо равна сумме энергий отд. колебаний. При высоких температурах средняя энергия каждого колебания ~ kT, при низких температурах она определяется формулой Планка £ кТ. Хотя в колебаниях решётки принимают участие все атомы Т. т., они атомного масштаба (напомним: средняя энергия поступательного движения частицы в классическом газе равна kT). Др. пример: электронное возбуждение атома, не локализуемое на определённом узле кристаллической решётки, а передающееся от узла к узлу. Энергия такого движения (оно может быть возбуждено при поглощении кванта света или при повышении температуры) порядка энергии возбуждения отдельного атома. Коллективные движения атомного масштаба имеют дискретную структуру. Например, энергия колебания атомов с частотой со может быть равна , 2 , 3 и т. д. Это позволяет каждому движению сопоставить квазичастицу. Квазичастицы, описывающие колебания атомов, называются фононами. в) При низких температурах (вблизи Т = 0) К) атомные частицы в некоторых Т. т. (и в жидком Не) могут совершать движение, квантовое по своей природе, но макроскопическое по масштабу. Наиболее изучено движение электронов в сверхпроводниках и атомов в сверхтекучем гелии. Характерная черта сверхпроводящего и сверхтекучего движения — строгая согласованность в поведении частиц, обусловленная взаимодействием между ними. Для "выхода из коллектива" частица должна преодолеть некоторую энергию (энергетическая щель). Существование энергетической щели делает сверхпроводящее и сверхтекучее движение устойчивым (незатухающим) (см. Сверхтекучесть, Сверхпроводимость).

6) Знание атомной структуры Т. т. и характера движения частиц в Т. т. (энергетический спектр) позволяет установить, какие квазичастицы ответственны за то или др. явление или свойство. Например, высокая электропроводность металлов обусловлена электронами проводимости, а теплопроводность — электронами проводимости и фононами; некоторые особенности поглощения света в диэлектриках — экситонами; ферромагнитный резонансмагнонами и т. д. Отличие количеств. характеристик различных движений позволяет отделить одно движение от другого. Например, из-за большого различия в массах скорость движения ионов в металлах и полупроводниках очень мала по сравнению со скоростью электронов. Поэтому в некотором приближении (называемом адиабатическим), рассматривая движение электронов, ионы можно считать неподвижными, а движение ионов определять усреднёнными (по быстрому движению) характеристиками электронов. Часто независимость различных типов движения Т. т. обусловлена малой энергией взаимодействия между степенями свободы различной природы. Например, в ферромагнетике колебания атомов и спиновые волны имеют энергию и скорость приблизительно одного масштаба, но связь между ними мала, потому что малы магнитострикционные силы (см. Магнитострикция). Однако в некоторых случаях имеет место резонансное взаимодействие между разнородными волновыми процессами, когда их частоты и длины волн совпадают. Это приводит к "перепутыванию" движений; например, колебание атомов (звук) можно возбудить переменным магнитным полем, а звуковая волна может самопроизвольно превратиться в спиновую.

7) Все Т. т. при достаточном повышении температуры плавятся (или возгоняются). Подводимая к телу в процессе плавления теплота тратится на разрыв межатомных связей. температура плавления Тпл, характеризующая силу связи атомных частиц в Т. т., различна: у молекулярного водорода Тпл = -259,1 °С, у вольфрама 3410 ± 20 °С, а у графита более 4000 °С. Исключение составляет твёрдый 3Не, который плавится под давлением при понижении температуры (см. Померанчука эффект). При изменении внешних условий (давления, температуры, магнитного поля и т. д.) в Т. т. происходят скачкообразные изменения структуры и свойств — фазовые переходы 1-го и 2-го рода. Наличие у Т. т. различных устойчивых кристаллических структур (модификаций) называется полиморфизмом (например, графит и алмаз, белое и серое олово). Переход из одной модификации в другую иногда происходит как фазовый переход 1-го рода, а иногда как переход 2-го рода. Примерами фазового перехода 2-го рода служат переход веществ из парамагнитного состояния в ферро- или антиферромагнитное, переход в сверхпроводящее состояние из нормального при отсутствии магнитного поля, упорядочение ряда сплавов, возникновение сегнетоэлектрических свойств у некоторых диэлектриков и др.

8) В большинстве случаев при определённой температуре все степени свободы атомных частиц в Т. т. можно разделить на 2 категории. Для одних kT велико по сравнению с характерной энергией их взаимодействия Uвз, для др. степеней свободы kT мало по сравнению с Uвз. Степени свободы, для которых kT ³ Uвз, могут быть описаны в терминах "газа частиц" (например, "газ магнитных стрелок" при Т ³ Тс); степени свободы, для которых kT £ Uвз, находятся на низком уровне возбуждения, благодаря чему соответствующие им движения могут быть описаны путём введения квазичастиц, слабо взаимодействующих друг с другом. Т. о., в большинстве случаев свойства Т. т. могут быть "сведены" к свойствам газов — либо частиц, либо квазичастиц. Сильное взаимодействие при этом не "выпадает", оно определяет структуру Т. т. (например, его кристаллической решётки) и свойства отдельной квазичастицы. Квазичастицы существуют не в свободном пространстве (как частицы в реальных газах), а в кристаллической решётке, структура которой отражается в свойствах квазичастиц. Вблизи точек фазового перехода 2-го рода такое "сведёние" невозможно, так как движение атомных частиц Т. т. в этих условиях скоррелировано (на "языке" квазичастиц это (означает, что нельзя пренебречь их взаимодействием). Корреляция носит особый (не силовой) характер: вероятность коллективных движений частиц и квазичастиц столь же велика, сколь и их индивидуальных движений. Возрастание роли корреляции в движении частиц приводит к наблюдаемым эффектам: возрастают теплоёмкость, магнитная восприимчивость и т. п. Вблизи фазового перехода 2-го рода Т. т. ведёт себя как система т сильно взаимодействующих частиц (или квазичастиц), принципиально не сводимая к газу. Вблизи фазового перехода 2-го рода Т. т. может служить моделью значительно более сложных систем (например, ядерной материи, элементарных частиц в процессе их взаимодействия).

Знание атомно-молекулярной структуры Т. т., характера движения составляющих его частиц объясняет наблюдаемые явления и позволяет предсказывать ещё не открытые свойства Т. т., а также целенаправленно изменять структуру Т. т. и синтезировать Т. т. с уникальным, набором свойств.

Физика Т. т. разделилась на ряд областей, обособление которых происходит путём выделения либо объекта исследования (физика металлов, физика полупроводников, физика магнетиков и др.), либо метода исследования (рентгеновский структурный анализ, радиоспектроскопия Т. т. и т. п.), либо определённых свойств Т. т. (механических, тепловых и т. д.). Возможность обособления — следствие относительной независимости атомных движений в Т. т.

Атомно-кристаллическая структура Т. т. зависит от сил, действующих между атомными частицами. Изменяя среднее расстояние между атомами с помощью внешнего давления, можно существенно изменить вклад межатомных сил различной природы и благодаря этому — кристаллическую структуру Т. т. Обнаружено большое число различных существующих при больших давлениях кристаллических модификаций, многие из которых отличаются по физическим свойствам. Например, Bi под давлением образует 3 сверхпроводящие модификации: при 25 300 атм < р < 27 000 атм Bi llI (Tc = 3,93 К); при 27 000 атм < р < 80 000 атм Bi III (Tc = 6,9 К); при 80 000 атм < р Bi IV (Tc = 7 К). Многие полупроводники под давлением переходят в металлическое состояние (Ge при р " 120 000 атм становится металлом), a Yb (металл) под давлением превращается в полупроводник. Есть основания считать, что молекулярный водород под давлением в 2—3 106 атм превращается в металл. При чрезвычайно большом давлении (или плотности), когда объём, приходящийся на один атом, становится меньше обычного атомного размера, атомы теряют свою индивидуальность и вещество превращается в сильно сжатую электронноядерную плазму. Исследование такого состояния вещества важно, в частности, для понимания структуры звёзд.

Атомная структура кристаллов экспериментально определяется методами рентгено-структурного анализа, магнитная структура ферромагнетиков и антиферромагнетиков (ориентация магнитных моментов атомов) — методами нейтронографии. Полное знание атомной структуры предполагает знание размеров элементарной ячейки кристалла и положения всех атомов внутри неё. Однако во многих случаях достаточно знать лишь элементы симметрии данного кристалла. При макроскопическом описании Т. т. (механических, электрических, тепловых, оптических свойств) кристаллы можно рассматриватькак сплошную анизотропную среду, в которой симметричное расположение атомов приводит к эквивалентности направлений. Основу симметрии бесконечной кристаллической решётки составляет её пространственная периодичность — способность совмещаться с собой при параллельных переносах (трансляциях) на определённые расстояния в определённых направлениях. Эквивалентные узлы кристаллической решётки, которые могут быть совмещены друг с другом путём трансляции, образуют Браве решётку. Их существует 14 типов. По симметрии Браве решётки делятся на 7 кристаллических сингоний. Кроме того, кристаллическая решётка может обладать осями и плоскостями симметрии, зеркально-поворотными и винтовыми осями и плоскостями зеркального скольжения. Совокупность осей и плоскостей симметрии, определяющая симметрию физических свойств кристаллов, называется кристаллическим классом; их 32. Совокупность всех элементов симметрии кристаллической решётки называется её пространственной группой. Всего возможно 230 различных пространственных групп. Если учесть магнитные свойства атомов, составляющих кристаллическую решётку, то число возможных магнитных пространственных групп увеличится до 1651 (см. Симметрия кристаллов).

Структура реального кристалла. Хотя монокристаллы большого размера в природе встречаются редко, они всё чаще используются в технике. Выращивают их искусственно (см. Синтетические кристаллы). Применяемые на практике конструкционные материалы, как правило, — поликристаллы, состоящие из огромного числа мелких монокристаллов (кристаллических зёрен). Многие свойства Т. т. (например, пластичность, прочность) зависят от величины зёрен. При хаотической ориентации кристаллических зёрен поликристалл можно считать изотропным телом, хотя каждый кристалл в отдельности анизотропен. В некоторых поликристаллах возникает анизотропия, связанная с условиями их кристаллизации и обработки (ориентированный рост, прокатка, ковка); она называется текстурой.

Границы зёрен нарушают строгую периодичность в расположении атомов в кристалле. Однако это — не единственные дефекты в кристаллах. Дефектами являются микроскопические включения (в частности, зародыши др. кристаллической модификации, пустоты и т. п.), сама поверхность образца, чужеродные примесные атомы, вакансии, атомы в междоузлиях, дислокации и т. д. Наличие или отсутствие тех или др. дефектов во многих случаях определяет так называемые структурночувствительные свойства Т. т.: механические (прочность, пластичность), электропроводность, оптические и др. (см. ниже).

Межатомные связи. По типам связей Т. т. делят на 5 классов, каждый из которых характеризуется своеобразным пространств. распределением электронов (табл. 1). 1) В ионных кристаллах (NaCI, KCl и др.) основные силы, действующие между ионами, — силы электростатического притяжения. Распределение электронного заряда вблизи каждого иона близко к сферическому и слегка нарушается в области соприкосновения соседних ионов. 2) В кристаллах с ковалентной связью валентные электроны обобществлены соседними атомами.

Табл. 1. — Классификация кристаллов по типам связей

Тип кристалла

Пример

Энергия связи*, ккал/моль

Характерные свойства

Ионный ………….

Атомный (с ковалентной связью) Металлический…

Молекулярный….

С водородными связями..…………

NaCI

 

 

 

С (алмаз), Ge, Si

 

Cu, Al

Ar, СН4

 

Н2О (лёд) H2F

180—220

 

 

 

170—283

 

 

26—96

1,8

 

3—10

Отражение и поглощение света в инфракрасной области; малая электропроводность при низких температурах; хорошая ионная проводимость при высоких температурах

Высокая твёрдость (у чистых образцов), слабая проводимость при низких температурах

Высокая электропроводность

Низкие точки плавления и кипения, сильная сжимаемость

Тенденция к полимеризации; энергия связи между молекулами больше, чем у аналогичных молекул без водородных связей

* Для кристаллов первых двух типов энергия связи определена при 300 К; для молекулярных кристаллов и кристаллов с водородными связями — в точке плавления. Иногда мерой энергии связи служит энергия (на одну частицу), которую надо затратить, чтобы, нагревая Т. т. от 0 К, расщепить его на невзаимодействующие атомы или ионы.

Кристалл по существу представляет собой огромную молекулу. Этот тип характеризуется высокой электронной плотностью между ионами и резкой направленностью связей. Примеры кристаллов с ковалентной связью: алмаз, Ge, Si. 3) У большинства металлов (например, щелочных) энергию связи обусловливают электроны проводимости; металл можно представлять как решётку из положительных ионов, погруженную в электронную жидкость (металлическая связь). У некоторых металлов (например, переходных) важна также ковалентная связь, осуществляемая электронами незаполненных внутренних оболочек. 4) В молекулярных кристаллах (например, в отвердевших инертных газах) молекулы связаны слабыми электростатическими силами (силы Ван-дер Ваальса), обусловленными взаимной поляризацией молекул. Для всех молекулярных кристаллов характерна слабая связь; они имеют низкую точку плавления и заметно сублимируют. В большинстве органических кристаллов молекулы связаны силами Ван-дер Ваальса (см. Межмолекулярное взаимодействие). 5) В кристаллах с водородными связями каждый атом водорода связан силами притяжения одновременно с двумя др. атомами. Водородная связь — основная форма взаимодействия между молекулами воды. Водородная связь вместе с электростатическим притяжением дипольных моментов молекул H2O определяет свойства воды и льда. Следует отметить, что классификация Т. т. по типам связи условна. Во многих веществах наблюдаются комбинации различных типов связи.

Природа сил связи в Т. т. получила объяснение только после привлечения квантовой механики, хотя источником сил, действующих между атомными частицами, в Т. т. служат электростатическое притяжение и отталкивание. Образование из атомов и молекул устойчивых Т. т. показывает, что силы притяжения на расстояниях ~ 10-8 см уравновешиваются силами отталкивания, быстро спадающими с расстоянием. Это даёт возможность в ряде случаев рассматривать атомные частицы как твёрдые шары и характеризовать их кристаллохимическими радиусами (см. Кристаллохимия).

Для описания энергии U Т. т. как функции среднего расстояния r между частицами часто пользуются формулой Ленарда — Джонса:

,

в которой первое слагаемое описывает энергию притяжения, а второе — отталкивания; здесь а — среднее межатомное расстояние в нормальных условиях, n зависит от типа связи, например в ионных кристаллах n = 1, а в молекулярных n = 6; m ~ 9—11. Энергия имеет минимум, равный Uo при r = а. Выражая r через удельный объём V (r ~ V ), получаем уравнение состояния Т. т. — зависимость давления

от удельного объёма. Такой подход связывает экспериментально измеряемые величины (энергию связи, сжимаемость и др.) друг с другом и с величинами,

входящими в выражение для силы, действующей между частицами. Теоретические методы позволяют, исходя из "первых принципов", рассчитать кристаллическую структуру, уравнение состояния, тепловые свойства Т. т. в широком интервале температур. Теоретические данные хорошо согласуются с экспериментом для ионных и молекулярных кристаллов. Для ковалентных кристаллов и металлов необходим учёт непарного характера сил, действующих между частицами.

Механические свойства Т. т. (реакции на внешние механические воздействия — сжатие, растяжение, изгиб, удар и т. д.) определяются силами связи между его структурными частицами. Многообразие этих сил приводит к разнообразию механических свойств: одни Т. т. пластичны, другие хрупки. Обычно металлы, в которых силы связи определяются коллективным действием электронов проводимости, более пластичны, чем диэлектрики; например, деформация Cu при комнатной температуре в момент разрыва достигает нескольких десятков %, а NaCI разрушается почти без деформации (хрупкость). Механические характеристики изменяются с температурой, например с повышением температуры пластичность обычно увеличивается. У большинства Т. т. реакция на внешнее механическое воздействие зависит от его темпа: хрупкое при ударе Т. т. может выдержать значительно большую статическую нагрузку.

При небольших статических нагрузках у всех Т. т. наблюдается линейное соотношение между напряжением и деформацией (Гука закон). Такая деформация называется упругой. Упругая деформация обратима: при снятии напряжения она исчезает. Для идеального монокристалла (без дефектов) область обратимой деформации наблюдалась бы вплоть до разрушения, причём предел прочности должен был бы соответствовать силам связи между атомами. При больших нагрузках реакция реального Т. т. существенно зависит от дефектности образца (от наличия или отсутствия дислокаций, от размеров кристаллических зёрен и т. п.) — разрушение начинается в самых слабых местах. Дислокация — наиболее подвижный дефект кристалла, поэтому именно дислокации в большинстве случаев определяют его пластичность. Появление (рождение) и перемещение дислокации — элементарные акты пластичности.

Механические свойства Т. т. зависят от его обработки, вносящей или устраняющей дефекты (отжиг, закалка, легирование, гидроэкструзия и т. п.). Например, предел прочности при растяжении специально обработанной стали 300—500 кгс/мм2, а обычной стали того же химического состава — не более 40—50 кгс/мм2 (табл. 2).

Табл. 2. — Механические характеристики идеальных и реальных металлических кристаллов

Идеальный кристалл.........………. Реальные кристаллы.........………. Специально термомеханически обработанные или нитевидные кристаллы..…………………………

Предел прочности, кгс/мм2

Упругая деформация, %

Пластическая деформация, %

(1,5—2) ×103 0,1—1

 

 

(0,5—1,4) ×103

1—5

10-2

 

 

0,5—2

0

От десятков до сотен %

1

Упругие свойства изотропных Т. т. (в частности, поликристаллов) описываются модулем Юнга Е (отношение напряжения к относительному удлинению) и коэффициентом Пуассона v (отношение изменения поперечных и продольных размеров), характеризующими реакцию на растяжение (сжатие) образца в виде однородного стержня (см. Упругость). Для стали и ковкого железа Е = 2,1×106 кгс/см2. Из условия устойчивости недеформированного состояния следует, что Е > 0, а—1 < n < . Однако в природе тела с отрицательным коэффициентом Пуассона не обнаружены. Модуль Юнга и коэффициент Пуассона определяют скорость распространения звуковых волн в изотропном Т. т.

В анизотропном кристалле упругие свойства описываются тензором 4-го ранга, число независимых компонент которого обусловлено симметрией кристалла. Поглощение звука (и вообще упругих волн) в Т. т. обусловлено: неодинаковостью температуры в разных участках Т. т. при прохождении по нему волны и возникновением в результате этого необратимых тепловых потоков (теплопроводность); конечностью скорости движения частиц Т. т. Необратимые процессы рассеяния, связанные с конечностью скорости движения, называются внутренним трением, или вязкостью. В идеальных кристаллах теплопроводность и вязкость определяются столкновениями квазичастиц друг с другом, в реальных кристаллах к этим процессам добавляется рассеяние звуковых волн на дефектах кристаллической решётки, важную роль играет также диффузия. Исследование поглощения звука — метод изучения динамических свойств Т. т., в частности свойств квазичастиц.

Механические свойства Т. т. — основа их инженерного применения как конструкционных материалов. В частности, знание связи деформаций и напряжений позволяет решать конкретные практические задачи о распределении напряжений и деформаций в Т. т. различной формы (балки, пластины, оболочки и т. п.) при разнообразных нагрузках — изгибе, кручении (см. Сопротивление материалов).

Движение частиц в Т. т. Фононы. Исследование теплового движения частиц в конденсированных средах приводит к понятию фононов. Если N — число ячеек кристалла, а n — число атомов (ионов) в элементарной ячейке, то 3Nn — полное степеней свободы число атомов кристалла, совершающих колебательное движение вблизи положений равновесия. Колебательный характер их движения сохраняется вплоть до температуры плавления Тпл. При Т = Тпл средняя амплитуда колебания атома меньше межатомного расстояния. Плавление обусловлено тем, что термодинамический потенциал жидкости при Т > Тпл меньше термодинамического потенциала Т. т. В первом (гармония.) приближении систему с 3Nn колебательными степенями свободы можно рассматривать как совокупность 3Nn независимых осцилляторов, каждый из которых соответствует отдельному нормальному колебанию.

В кристалле с нарушениями периодичности (дефектами) среди нормальных колебаний имеются особые, в которых участвуют не все атомы кристалла, а только локализованные вблизи дефекта (например, чужеродного атома). Такие колебания называются локальными. Хотя их число невелико, они в ряде случаев определяют некоторые физические свойства (оптические свойства, особенности Мёссбауэра эффекта и др.). Вблизи поверхности в Т. т. могут распространяться локальные поверхностные волны, амплитуда которых экспоненциально уменьшается при удалении от поверхности (Рэлея волны). Подобные вол

Твёрдость

Твёрдость, сопротивление материала вдавливанию или царапанию. Т. не является физической постоянной, а представляет собой сложное свойство, зависящее как от прочности и пластичности материала, так и от метода измерения. Подробнее см. Твёрдость металлов, Твёрдость минералов.

Твёрдость металлов

Твёрдость металлов, сопротивление металлов вдавливанию. Т. м. не является физической постоянной, а представляет собой сложное свойство, зависящее как от прочности и пластичности, так и от метода измерения. Т. м. характеризуется числом твёрдости. Наиболее часто для измерения Т. м. пользуются методом вдавливания. При этом величина твёрдости равна нагрузке, отнесённой к поверхности отпечатка, или обратно пропорциональна глубине отпечатка при некоторой фиксированной нагрузке. Отпечаток обычно производят шариком из закалённой стали (методы Бринелля, Роквелла), алмазным конусом (метод Роквелла) или алмазной пирамидой (метод Виккерса, измерение микротвёрдости). Реже пользуются динамическими методами измерения, в которых мерой твёрдости является высота отскакивания стального шарика от поверхности изучаемого металла (например, метод Шора) или время затухания колебания маятника, опорой которого является исследуемый металл (метод Кузнецова — Герберта — Ребиндера). Получает распространение метод измерения Т. м. с помощью ультразвуковых колебаний, в основе которого лежит измерение реакции колебательной системы (изменения её собственной частоты) на твёрдость испытуемого металла. Числа твёрдости указываются в единицах НВ (метод Бринелля), HV (метод Виккерса), HR (метод Роквелла), где Н от английского hardness — твёрдость. Поскольку при определении твёрдости методом Роквелла пользуются как стальным шариком, так и алмазным конусом, часто вводятся дополнительные обозначения — В (шарик), С и А (конус, разные нагрузки). По специальным таблицам или диаграммам можно осуществлять пересчёт чисел твёрдости (например, число твёрдости по Роквеллу можно пересчитать на число твёрдости по Бринеллю). Выбор метода определения твёрдости зависит от исследуемого материала, размеров и формы образца или изделия и др. факторов.

Твёрдость весьма чувствительна к изменению структуры металла. При изменении температуры или после различных термических и механических обработок величина Т. м. и сплавов меняется в том же направлении, что и предел текучести; поэтому часто при контроле изменения механических свойств после различных обработок металл характеризуют твёрдостью, которая измеряется проще и быстрее. Измерениями микротвёрдости пользуются при изучении механических свойств отдельных зёрен, а также структурных составляющих сложных сплавов.

Для относительной оценки жаропрочности металлических материалов иногда пользуются так называемой длительной твёрдостью (или микротвёрдостью), измерение которой производят при повышенной температуре длительное время (минуты, часы).

Лит.: Геллер Ю. А., Рахштадт А. Г., Материаловедение, 4 изд., М., 1975, с. 167— 90.

В. М. Розенберг.

Твёрдость минералов

Твёрдость минералов, свойство минералов оказывать сопротивление проникновению в них др. тел. Твёрдость — важный диагностический и типоморфный признак минерала, функция его состава и структуры, которые в различной мере отражают условия минералообразования. Т. м. возрастает при уменьшении межатомных расстояний в кристалле, при увеличении валентности и координационного числа составляющих атомов, при переходе от ионного типа химической связи к ковалентному и т. д. Присутствие в структуре гидроксильных групп или молекул воды, а также наличие в минералах газово-жидких включений заметно снижает их твёрдость; кроме того, Т. м. зависит от количества и состава изоморфных примесей, дефектов в структуре, наличия микровключений и продуктов растворов, степени изменённости минерала и т. д.

Т. м. — векторное свойство, зависящее от направления даже в кристаллах кубической сингонии (классический пример анизотропии Т. м. — кианит). Определяют Т. м. по относительной минералогической шкале (см. Мооса шкала); главная масса природных соединений обладает твёрдостью 2—6 (наиболее твёрдые минералы — безводные окислы и силикаты). Микротвёрдость определяется при помощи склерометров; данные по микротвёрдости используют при характеристике генетического типа месторождения, генераций минералов и типов руд, при изучении истории минеральных индивидов.

Лит.: Поваренных А. С., Твердость минералов, К., 1963.

Т. Н. Логинова.

Твердотопливный ракетный двигатель

Твердотопливный ракетный двигатель (РДТТ), пороховой ракетный двигатель, ракетный двигатель твёрдого топлива, реактивный двигатель, работающий на твёрдом ракетном топливе (порохах). В РДТТ всё топливо в виде заряда помещается в камеру сгорания; двигатель обычно работает непрерывно до полного выгорания топлива.

РДТТ были первыми ракетными двигателями, нашедшими практическое применение. Ракеты с РДТТ (пороховые ракеты) известны уже около 1000 лет; они использовались как сигнальные, фейерверочные, боевые. Описания "огненных стрел" — прототипов пороховых ракет — содержатся в китайских и индийских рукописях 10 в. Это оружие представляло собой обычные стрелы, к которым прикреплялись бамбуковые трубки, заполненные порохом. В 1-й половине 17 в. в "Уставе" Онисима Михайлова описываются первые русские ракеты — артиллерийские ядра с каналом, в котором помещался пороховой заряд. В 1799 индийцы применяли боевые ракеты против английских колонизаторов, а в 1807 англичане использовали подобные ракеты в войне с Данией (при осаде Копенгагена). Первоначально топливом для РДТТ служил дымный порох. В конце 19 в. был разработан бездымный порох, превосходивший дымный по устойчивости горения и работоспособности. В дальнейшем были получены новые высокоэффективные виды твёрдых топлив, что позволило конструировать боевые ракеты с РДТТ самой различной дальности, вплоть до межконтинентальных баллистических ракет.

РДТТ применяются (1976) главным образом в реактивной артиллерии, а также в космонавтике в качестве тормозных двигателей космических летательных аппаратов и двигателей первых ступеней ракет-носителей.

РДТТ состоит из корпуса (камеры сгорания), в котором размещен весь запас топлива, и реактивного сопла. Корпус РДТТ обычно стальной, но иногда выполняется из стеклопластика. Околокритическая (наиболее теплонапряжённая) часть сопла РДТТ делается из графита, тугоплавких металлов и их сплавов, закритическая — из стали, пластических масс, графита.

Твёрдое ракетное топливо обычно заливается в корпус РДТТ в полувязком текучем состоянии; после отверждения топливо плотно примыкает к стенкам, защищая их от горячих газов. Иногда (в РДТТ неуправляемых ракет) топливо закладывается в камеру в виде спрессованных из порошка зёрен и шашек. Для зажигания топлива служит воспламенительное устройство, которое может входить непосредственно в конструкцию РДТТ или быть автономным (например, специальный пусковой двигатель). В простейшем случае воспламенительное устройство представляет собой навеску дымного пороха в оболочке из материи или металла. Навеска поджигается с помощью электрозапала или пиросвечи с пиропатроном.

Регулирование тяги РДТТ может производиться изменением (увеличением или уменьшением) поверхности горения заряда или площади критического сечения сопла; впрыскиванием жидкости, например воды, в камеру РДТТ. Направление тяги РДТТ меняется с помощью газовых рулей; отклоняющейся цилиндрической насадки (дефлектора); вспомогательных управляющих двигателей; качающихся сопел основных двигателей и т. д. Для обеспечения заданной скорости ракеты в конце активного участка траектории применяется "отсечка" РДТТ (гашение заряда путём быстрого снижения давления в камере двигателя, отклонение реактивной струи и др. способы).

Диапазон тяг РДТТ—от сотых долей к для микроракетных двигателей до 10—15 Мн для мощных двигателей, устанавливаемых на ракетах-носителях (тяга экспериментального РДТТ, разработанного в США, составляет около 16 Мн). Для лучших РДТТ (1975) удельный импульс достигает 2,5—3 (кн×сек)/кг.

РДТТ характеризуются высокой надёжностью (99,96—99,99%); возможностью длительного хранения, то есть постоянной готовностью к запуску; значительной тягой за счёт очень короткого времени горения; безопасностью в обращении из-за отсутствия токсичных материалов; большой плотностью топлива (1,5— 2 г/см3). Недостатки РДТТ: большая масса конструкции из-за высоких давлений в камере сгорания; чувствительность большинства видов топлива к удару и изменениям температуры; неудобство транспортировки снаряженных РДТТ; малое время работы; трудности, связанные с регулированием вектора тяги; малый удельный импульс по сравнению с жидкостными ракетными двигателями.

Лит.: Сокольский В. Н., Ракеты на твердом топливе в России, М., 1963; Рожков В. В,, Двигатели ракет на твердом топливе, М., 1971; Виницкий А. М., Ракетные двигатели на твердом топливе, М., 1973.

Г. А. Назаров.

Твердофазные реакции

Твердофазные реакции (в аналитической химии), реакции между твёрдыми веществами, обнаруживаемые по появлению характерной окраски. К Т. р. относят также реакции, в результате которых происходит выпадение или растворение окрашенного осадка. Методика аналитической Т. р. проста: небольшие количества (порядка 1 мг) испытуемого вещества и реагента смешивают на полоске фильтровальной бумаги или в фарфоровом тигле и наблюдают за появлением окраски. Этим способом можно обнаружить, например, Ni2+ его солях, прибавив к пробе вещества немного диметилглиоксима и (NH4)2CO3, в результате чего по является красный диметилглиоксимин Ni (C4H7O2N)2. Соли Pb2=дают с KI жёлтый PbI2, соли Fe3+ и K4Fe (CN)6 — синий Fe4,[Fe (CN6)3 (берлинская лазурь) и т. п. Т. р. могут быть использованы в полевых условиях для идентификации минералов, руд, химических удобрений, проверки лекарств. препаратов и др.

Лит.: Воскресенский П. И., Аналитические реакции между твердыми веществами и полевой химический анализ, М., 1963.

С. А. Погодин.

Твёрдые растворы

Твёрдые растворы, твёрдые фазы переменного состава, в которых атомы раз личных элементов смешаны в известных пределах или неограниченно в общей кристаллической решётке. Растворимость в твёрдом состоянии свойственна всем кристаллическим твёрдым телам. Б большинстве случаев эта растворимость ограничена узкими пределами, но известны системы с непрерывным рядом Т. р. (например, Cu — Au, Ti — Zr, Ge — Si, GaAs — GaP). По существу все кристаллические вещества, известные как "чистые" или "особо чистые", являются Т. р. с очень малым содержанием примесей, поскольку абсолютная чистота практически недостижима. В природе широко распространены Т. р. минералов (см. Изоморфизм). Наличие широкой области Т. р. на основе соединений или главным образом металлов имеет громадное значение в технике, так как образующиеся при этом сплавы отличаются более высокими механическими, физическими и др. свойствами, чем исходные компоненты. При распаде Т. р. сплавы при обретают новые, часто особые свойства (см. Термическая обработка, Закалка, Отпуск).

Примесные атомы или атомы легирующих элементов могут образовывать с матрицей основного кристалла либо Т. р. замещения, либо Т. р. внедрения; это зависит в основном от двух факторов: размерного и электрохимического. Известны два полуэмпирических правила Юм-Розери, согласно которым Т. р. замещения образуются лишь теми атомами, которые, во-первых, имеют близкие по размерам радиусы (отличающиеся не более чем на 15%, а в случае Т. р. на основе Fe — не более чем на 8%) и, во-вторых, электрохимически подобны (находятся не слишком далеко друг от друга в ряду напряжении). Т. р. внедрения образуются в тех случаях, когда размеры атомов компонентов существенно отличаются друг от друга и возможно внедрение атомов одного сорта в пустоты (междоузлия) кристаллической решётки, образованной атомами другого сорта. Образование подобных Т. р. типично для растворения в металлах таких неметаллов, как бор, кислород, азот и углерод (см., например, Аустенит, Мартенсит). Т. р. как замещения, так и внедрения могут быть либо неупорядоченными — со статистическим распределением атомов в решётке, либо частично или полностью упорядоченными — с определённым расположением атомов разного сорта относительно друг друга. Полностью упорядоченные Т. р. принято называть сверхструктурными. В некоторых случаях в Т. р. атомы одного сорта могут стремиться к объединению, образуя скопления, которые, в свою очередь, могут определённым образом ориентироваться или упорядоченно распределяться. Экспериментальные данные об упорядочении Т. р. получают в основном при изучении диффузного рассеяния рентгеновских лучей (см. Рентгеновский структурный анализ). Т. р., находящиеся в термодинамическом равновесии, в макроскопическом масштабе можно считать истинно гомогенными; однако при этом они не обязательно гомогенны при рассмотрении в атомном масштабе. Наряду с двумя основными типами Т. р. — замещения и внедрения — может быть выделен и третий тип — Т. р. вычитания, образованные вакантными узлами кристаллической решётки (см. Вакансия и Дефекты в кристаллах). Существуют и неметаллические системы, которые относят к Т. р., обладающие весьма ценными свойствами и широко используемые в современной технике, например полупроводники и ферриты.

Лит. см. при ст. Сплавы.

Г. В. Инденбаум.

Твёрдые семена

Твёрдые семена, твердокаменные семена, семена растений, не набухающие и не прорастающие в течение установленного для определения их всхожести срока. У Т. с. плотная малопроницаемая оболочка, не пропускающая воду и воздух к зародышу. Наиболее часто встречаются в семенных партиях многолетних бобовых трав (клевера, люцерны, донника и др.), мелкосеменной вики, люпина. Количество их зависит от условий формирования и созревания семян (например, в засушливые годы клевер красный и люцерна посевная образуют до 60—65% Т. с.) и уменьшается после хранения, продолжительность которого для разных культур неодинакова (от нескольких недель до нескольких лет). При посеве Т. с. наблюдаются недружные всходы, изреженный травостой. Нарушение целостности семенной оболочки Т. с. перед посевом (см. Скарификация семян) нормализует их прорастание.

Твёрдые сплавы

Твёрдые сплавы, особого класса износостойкие материалы с весьма большой твёрдостью, которая незначительно меняется при нагреве. Различают спечённые Т. с. (см. Спечённые материалы)и литые Т. с.

Спечённые Т. с. — композиционные материалы, состоящие из металлоподобного соединения, цементированного металлом или сплавом. Их основой чаще всего являются карбиды вольфрама или титана, сложные карбиды вольфрама и титана (часто также и тантала), карбонитрид титана, реже — др. карбиды, бориды и т. п. В качестве цементирующих металлов обычно используют кобальт, реже — никель, его сплав с молибденом, сталь.

Впервые спечённый Т. с. получен из карбида вольфрама и кобальта в Германии в 1923—25, промышленное производство начато в 1926 (сплав "видиа": 94% WC и 6% Со). В СССР первый Т. с. из карбида вольфрама (90%) и кобальта (10%) — сплав "победит" — создан в 1929, а в 1935 организовано производство Т. с. "альфа" из смесей карбидов вольфрама и титана (21, 15 и 5% TiC в сплаве) и кобальта (соответственно 8, 6 и 8% Со). В 1975

в СССР производили изделия более 1300 форморазмеров из Т. с. более 20 марок. Основу выпуска Т. с. составляют вольфрамовые (вольфрамо-кобальтовые) с 3—25% Со, титано-вольфрамовые с 4—40% TiC и 4—12% Со и титано-тантало-вольфрамовые Т. с. Эти группы Т. с. обозначают буквами ВК, ТК и ТТК с цифрами: после Т — содержание (%) карбида титана, после ТТ — суммы карбидов титана и тантала, а после К — кобальта; в сплавах ВК после цифры иногда добавляют буквы В, М или ОМ, указывающие на крупность зёрен карбида вольфрама (крупно-, мелко-, особомелкозернистые сплавы). Например, ВК6М — сплав на основе карбида вольфрама с 6% Со, мелкозернистый. Эти сплавы характеризуются большой твёрдостью (86—92 HRA), прочностью (у сплавов ВК разных марок пределы прочности при изгибе 1—2,5 Гн/м2, или 100— 250 кгс/мм2, при сжатии 3,2—5,9 Гн/м2, или 320—590 кгс/мм2, в зависимости от содержания кобальта; у сплавов ТК — соответственно 1,15—1,6 Гн/м2, или 115— 160 кгс/мм2, и 3,8—6,5 Гн/м2, или 380— 650 кгс/мм2), износостойкостью (эти свойства сохраняются на достаточно высоком уровне даже при нагреве до 800—900 °С), а также электро- и теплопроводностью; сплавы ВК имеют плотность в пределах 13 000—15 100 кг/м3, ТК и ТТК — 9 600—15 000 кг/м3

Всё большее значение приобретает производство безвольфрамовых Т. с. Их выпуск позволяет заменить относительно дорогой вольфрам более дешёвыми металлами, расширить номенклатуру Т. с. со специфическими свойствами, создать Т. с. с более высокими эксплуатационными характеристиками. Очень перспективны, в частности, Т. с. на основе карбонитрида титана с никель-молибденовым сплавом в качестве связующего металла и Т. с. на основе карбида титана с тем же или со стальным связующим. Чрезвычайно важное направление развития производства Т. с. — быстро возрастающий выпуск неперетачиваемых режущих пластинок из Т. с. с тонкими (толщиной 5—15 мкм) покрытиями из карбонитрида, карбида или нитрида титана либо др. соединений, обеспечивающими повышение стойкости при резании в 3—10 раз. Применение режущего инструмента с такими пластинками особенно перспективно на автоматических линиях обработки резанием деталей машин в автомобильной и др. отраслях промышленности.

Спечённые Т. с. производят методами порошковой металлургии в виде многогранных пластинок и фасонных цельнотвердосплавных изделий. Их с большой эффективностью применяют для обработки металлов, сплавов и неметаллических материалов резанием, для бесстружковой обработки (волочение, прокатка, штамповка и т. п.), для оснащения рабочих частей буровых инструментов и как конструкционные материалы. Благодаря применению Т. с. достигается существенная интенсификация процессов в машиностроении и металлообработке, в добыче руд, каменного угля, нефти, газа и др. полезных ископаемых. Заменив инструментальные стали, Т. с. способствовали технической революции в металлообрабатывающей и горной промышленности, где стойкость инструмента, оснащенного Т. с., повысилась в 15—100 раз, что обусловило рост производительности труда в 3—5 раз.

Литые Т. с. получают методом плавки и литья. Примером литых Т. с. служит рэлитный сплав WC — W2C (содержит 3,7—4,0% С) с твёрдостью 91—92 HRA. Его получают в виде крупных зёрен плавкой с последующим дроблением слитков или разбрызгиванием расплавов; применяют рэлит главным образом для наварки на соприкасающиеся с породой части работающего с большими усилиями бурового инструмента; для тех же целей разработаны безвольфрамовые Т. с. на основе боридов и др. износостойких твёрдых соединений. К литым Т. с. относится большая группа Т. с., напыляемых или наплавляемых на детали механизмов и машин, подверженные абразивному износу, эрозии или коррозии, например стеллиты (Cr, W, Ni, С; основа Со), сормайты (Cr, Ni, С; основа Fe), стеллитоподобные (основа Ni) и многие др. износостойкие Т. с. Их применение позволяет в 2—4 (иногда в 10—20) раз увеличить срок службы быстроизнашивающихся деталей механизмов и машин, в том числе автомашин, тракторов, комбайнов и т. д.

Лит.: Металлокерамическне твёрдые сплавы. М., 1970; Креймер Г. С., Прочность твёрдых сплавов, 2 изд., М., 1971; Туманов В. И., Свойства сплавов системы карбид вольфрама — кобальт, М., 1971; его же, Свойства сплавов системы карбид вольфрама — карбид титана — карбид тантала — карбид ниобия — кобальт, М., 1973; Третьяков В. И., Основы металловедения и технологии производства спечённых твёрдых сплавов, 2 изд., М., 1976.

О. П. Колчин.

Твёрдый налёт

Твёрдый налёт в метеорологии, плотный белый налёт из мелких ледяных кристаллов, образующийся при сублимации водяного пара на холодных поверхностях, подверженных действию ветра. Это наветренные поверхности каменных стен, колонн, скал и т. п. массивных предметов с большой теплоёмкостью и довольно хорошей теплопроводностью. Т. н. возникает при отрицательных температурах воздуха, но при ослаблении морозов, когда указанные предметы, сильно охладившиеся в предшествующую холодную погоду, ещё не успели принять температуру притекающего к ним более тёплого воздуха. Толщина Т. н. не превышает нескольких мм. Т. н. следует отличать от гололёда.

Тверитинов Дмитрий Евдокимович

Тверитинов, Дерюшкин Дмитрий Евдокимович (1667 — умер не ранее 1741), русский мыслитель начала 18 в., еретик. Родился в Твери (ныне Калинин). Был стрельцом, затем — слобожанином. В 1692 переселился в Москву. Около 1700 поступил в аптеку И. Грегори в Немецкой слободе, изучил латинский язык, занимался медицинской практикой. Познакомившись с идеями протестантизма, Т. создал собственное учение, близкое к еретическим учениям на Руси 15—16 вв. Т. выступал против поклонения иконам, кресту, почитания святых, их мощей. Он проповедовал отказ от причастия, отрицал авторитет церкви и церковную организацию. Т. признавал служение богу посредством духовного усовершенствования и нравственного подвижничества. Идеи Т. получили широкое распространение среди жителей Москвы. Он вёл также философские споры с образованными людьми Москвы и Петербурга. В 1713 духовенство во главе с С. Яворским начало против Т. и его единомышленников следственное дело по обвинению в ереси. Благодаря заступничеству петербургских вельмож и самого Петра I, после отречения от своих воззрений Т. в 1718 был освобожден на поруки. В 1723 Синод снял с него церковное проклятие.

Лит.: Корецкий В. И., Вольнодумец XVIII в. Д. Тверитинов, в кн.: Вопросы истории религии и атеизма, в. 12, М., 1964, с. 244—66.

Тверитинов Евгений Павлович

Тверитинов Евгений Павлович [19(31).5.1850, Кронштадт, — 16.5.1920, там же], русский электротехник, генерал-майор (1905). В 1876 окончил академический курс морских наук (с 1877 — Морская академия), в 1877 — Минный офицерский класс в Кронштадте. В 1879 впервые оборудовал боевые корабли установками электрического освещения (свечами Яблочкова). В 1883 устроил электрическую иллюминацию колокольни Ивана Великого в Московском Кремле. Сделал ряд изобретений в области минного оружия (кольцевой замыкатель и др.). Разработал одну из конструкций аккумуляторов, организовал их производство и применил на флоте.

Соч.: Электрическое освещение. Курс минного офицерского класса, в. 1, СПБ, 1883; Электрические аккумуляторы, СПБ, 1888.

Лит.: Белькинд Л. Д., Мокеев А. Н., Тверитинов А. Е., Евгений Павлович Тверитинов, М.— Л., 1962.

Тверская школа

Тверская школа (13—15 вв.), одна из местных школ древнерусской живописи, сложившаяся в Твери в период феодальной раздробленности. Для произведений Т. ш. (сохранились иконы, миниатюры рукописей) характерны экспрессия суровых образов, подчёркнутая линейность письма, напряжённость цветовых отношений (миниатюры "Хроники Георгия Амартола", Библиотека СССР им. Б. И. Ленина, икона "Борис и Глеб", Киевский музей русского искусства — оба конец 13 — начало 14 вв.). В 15 в. усилилась свойственная Т. ш. и ранее ориентация на художественные традиции балканских стран.

Лит.: Евсеева Л. М., Кочетков И. А., Сергеев В. Н., Живопись древней Твери, М., 1974.

Тверские посредники

Тверские посредники, группа дворян Тверской губернии, занимавших должности мировых посредников, выразивших протест против крепостнических сторон Крестьянской реформы 1861. В феврале 1862 губернское дворянское собрание обратилось к императору Александру II с адресом, в котором указывалось на необходимость немедленного обязательного для помещиков предоставления крестьянам земель на выкуп, то есть прекращения временнообязанных отношений. В адресе предлагались также гласность судопроизводства и созыв от всех сословий центрального представительного собрания. Группа мировых посредников (13 человек во главе с братьями А. А. и Н. А. Бакуниными) заявила губернатору о своей солидарности с адресом н отказалась руководствоваться в своей деятельности "Положениями" 19 февраля 1861. Правительство расправилось с "легально действовавшими дворянами — помещиками" (Ленин В. И., Полное собрание соч., том 5, страница 27): они были приговорены к двухлетнему заключению в Петропавловскую крепость, однако вскоре освобождены как лица, не представлявшие особой опасности самодержавию. Протест тверских посредников явился одним из выражений складывавшегося либерализма в России.

Лит.: Попов И. П., Либеральное движение провинциального дворянства в период подготовки и проведения реформы 1861 г., "Вопросы истории". 1973, № 3.